N. Ragot, R. Khemmar, Adithya Pokala, R. Rossi, J. Ertaud
{"title":"Benchmark of Visual SLAM Algorithms: ORB-SLAM2 vs RTAB-Map*","authors":"N. Ragot, R. Khemmar, Adithya Pokala, R. Rossi, J. Ertaud","doi":"10.1109/EST.2019.8806213","DOIUrl":null,"url":null,"abstract":"This works deals with a benchmark of two well-known visual Simultaneous Localization and Mapping (vSLAM) algorithms: ORB-SLAM2 proposed by Mur-Atal & al in 2015 [7] and RTAB-Map proposed by [8]. The benchmark has been carried out with an Intel real-sense camera 435D mounted on top of a robotics electrical powered wheelchair running a ROS platform. The ORB SLAM has been implemented taking into account a monocular, stereo and RGB-D camera. RTAB SLAM, meanwhile, has only implemented with monocular and RGB-D camera. Several experiments have been carried out in a controlled indoor environment at the ESIGELEC's Autonomous Navigation Laboratory. These experiments are supported by the use of the VICON motion capture system used as a ground-truth to validate our results [1]. Different motion scenarios are used to test and benchmark the SLAM algorithms in various configurations: straight-line, straight-line and back, circular path with loop closure, etc.","PeriodicalId":102238,"journal":{"name":"2019 Eighth International Conference on Emerging Security Technologies (EST)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eighth International Conference on Emerging Security Technologies (EST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EST.2019.8806213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
This works deals with a benchmark of two well-known visual Simultaneous Localization and Mapping (vSLAM) algorithms: ORB-SLAM2 proposed by Mur-Atal & al in 2015 [7] and RTAB-Map proposed by [8]. The benchmark has been carried out with an Intel real-sense camera 435D mounted on top of a robotics electrical powered wheelchair running a ROS platform. The ORB SLAM has been implemented taking into account a monocular, stereo and RGB-D camera. RTAB SLAM, meanwhile, has only implemented with monocular and RGB-D camera. Several experiments have been carried out in a controlled indoor environment at the ESIGELEC's Autonomous Navigation Laboratory. These experiments are supported by the use of the VICON motion capture system used as a ground-truth to validate our results [1]. Different motion scenarios are used to test and benchmark the SLAM algorithms in various configurations: straight-line, straight-line and back, circular path with loop closure, etc.