Bayesian belief networks for fault identification in aircraft gas turbine engines

T.A. Mast, A. Reed, S. Yurkovich, M. Ashby, S. Adibhatla
{"title":"Bayesian belief networks for fault identification in aircraft gas turbine engines","authors":"T.A. Mast, A. Reed, S. Yurkovich, M. Ashby, S. Adibhatla","doi":"10.1109/CCA.1999.806140","DOIUrl":null,"url":null,"abstract":"Describes the methodology for usage of Bayesian belief networks (BBNs) in fault detection for aircraft gas turbine engines. First, the basic theory of BBNs is discussed, followed by a discussion on the application of this theory to a specific engine. In particular, the selection of faults and the means by which operating regions for the BBN system are chosen are analyzed. This methodology is then illustrated using the GE CFM56-7 turbofan engine as an example.","PeriodicalId":325193,"journal":{"name":"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1999.806140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Describes the methodology for usage of Bayesian belief networks (BBNs) in fault detection for aircraft gas turbine engines. First, the basic theory of BBNs is discussed, followed by a discussion on the application of this theory to a specific engine. In particular, the selection of faults and the means by which operating regions for the BBN system are chosen are analyzed. This methodology is then illustrated using the GE CFM56-7 turbofan engine as an example.
基于贝叶斯信念网络的航空燃气涡轮发动机故障识别
介绍了贝叶斯信念网络在航空燃气轮机发动机故障检测中的应用方法。首先,讨论了bbn的基本理论,然后讨论了该理论在特定发动机上的应用。重点分析了BBN系统故障的选择和运行区域的选择方法。然后以GE CFM56-7涡扇发动机为例说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信