A. A. Abdo, M. Ackermann, M. Ajello, W. B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, B. Berenji, R. Blandford, E. D. Bloom, E. Bonamente, A. W. Borgland, A. Bouvier, J. Bregeon, A. Brez, M. Brígida, P. Bruel, T. H. Burnett, S. Buson, G. A. Caliandro, R. A. Cameron, P. A. Caraveo, S. Carrigan, J. M. Casandjian, E. Cavazzuti, C. Cecchi, Ö. Çelik, E. Charles, A. Chekhtman, C. Cheung, J. Chiang, S. Ciprini, R. Claus, J. Cohen-Tanugi, J. Conrad, S. Cutini, C. D. Dermer, A. D. Angelis, F. D. Palma, S. Digel, E. Silva, P. Drell, R. Dubois, D. Dumora, C. Farnier, C. Favuzzi, S. J. Fegan, W. Focke, P. Fortin, M. Frailis, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, N. Gehrels, S. Germani, B. Giebels, N. Giglietto, P. Giommi, F. Giordano, T. Glanzman, G. Godfrey, I. Grenier, Mickael Grondin, J. E. Grove, L. Guillemot, S. Guiriec, A. Harding, R. C. Hartman, M. Hayashida, E. Hays, S. Healey, D. Horan, R. E. Hughes., M. S. Jackson, G. Johannesson,
{"title":"C","authors":"A. A. Abdo, M. Ackermann, M. Ajello, W. B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, B. Berenji, R. Blandford, E. D. Bloom, E. Bonamente, A. W. Borgland, A. Bouvier, J. Bregeon, A. Brez, M. Brígida, P. Bruel, T. H. Burnett, S. Buson, G. A. Caliandro, R. A. Cameron, P. A. Caraveo, S. Carrigan, J. M. Casandjian, E. Cavazzuti, C. Cecchi, Ö. Çelik, E. Charles, A. Chekhtman, C. Cheung, J. Chiang, S. Ciprini, R. Claus, J. Cohen-Tanugi, J. Conrad, S. Cutini, C. D. Dermer, A. D. Angelis, F. D. Palma, S. Digel, E. Silva, P. Drell, R. Dubois, D. Dumora, C. Farnier, C. Favuzzi, S. J. Fegan, W. Focke, P. Fortin, M. Frailis, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, N. Gehrels, S. Germani, B. Giebels, N. Giglietto, P. Giommi, F. Giordano, T. Glanzman, G. Godfrey, I. Grenier, Mickael Grondin, J. E. Grove, L. Guillemot, S. Guiriec, A. Harding, R. C. Hartman, M. Hayashida, E. Hays, S. Healey, D. Horan, R. E. Hughes., M. S. Jackson, G. Johannesson,","doi":"10.1002/9781119548836.ch3","DOIUrl":null,"url":null,"abstract":"We present a multiwavelength study of five coronal mass ejection/flare events (CME/flare) and associated coronal shock waves manifested as type II radio bursts. The study is focused on the events in which the flare energy release, and not the associated CME, is the most probable source of the shock wave. Therefore, we selected events associated with rather slow CMEs (reported mean velocity below 500 km s−1). To ensure minimal projection effects, only events related to flares situated close to the solar limb were included in the study. We used radio dynamic spectra, positions of radio sources observed by the Nançay Radioheliograph, GOES soft X-ray flux measurements, Large Angle Spectroscopic Coronagraph, and Extreme-ultraviolet Imaging Telescope observations. The kinematics of the shock wave signatures, type II radio bursts, were analyzed and compared with the flare evolution and the CME kinematics. We found that the velocities of the shock waves were significantly higher, up to one order of magnitude, than the contemporaneous CME velocities. On the other hand, shock waves were closely temporally associated with the flare energy release that was very impulsive in all events. This suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. In four events the shock wave was most probably flare-generated, and in one event results were inconclusive due to a very close temporal synchronization of the CME, flare, and shock.","PeriodicalId":152647,"journal":{"name":"Rapid Differential Diagnosis","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Differential Diagnosis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119548836.ch3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a multiwavelength study of five coronal mass ejection/flare events (CME/flare) and associated coronal shock waves manifested as type II radio bursts. The study is focused on the events in which the flare energy release, and not the associated CME, is the most probable source of the shock wave. Therefore, we selected events associated with rather slow CMEs (reported mean velocity below 500 km s−1). To ensure minimal projection effects, only events related to flares situated close to the solar limb were included in the study. We used radio dynamic spectra, positions of radio sources observed by the Nançay Radioheliograph, GOES soft X-ray flux measurements, Large Angle Spectroscopic Coronagraph, and Extreme-ultraviolet Imaging Telescope observations. The kinematics of the shock wave signatures, type II radio bursts, were analyzed and compared with the flare evolution and the CME kinematics. We found that the velocities of the shock waves were significantly higher, up to one order of magnitude, than the contemporaneous CME velocities. On the other hand, shock waves were closely temporally associated with the flare energy release that was very impulsive in all events. This suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. In four events the shock wave was most probably flare-generated, and in one event results were inconclusive due to a very close temporal synchronization of the CME, flare, and shock.
我们提出了一个多波长的研究五个日冕物质抛射/耀斑事件(CME/耀斑)和相关的日冕激波表现为II型射电暴。这项研究的重点是耀斑能量释放的事件,而不是相关的日冕物质抛射,这是最可能的冲击波来源。因此,我们选择了与相当慢的cme(报道的平均速度低于500 km s - 1)相关的事件。为了确保最小的投影效应,研究中只包括与靠近太阳边缘的耀斑有关的事件。我们使用了射电动态光谱、nanay射电日冕仪观测到的射电源位置、GOES软x射线通量测量、大角度日冕仪和极紫外成像望远镜观测。对II型射电暴激波特征的运动学进行了分析,并与耀斑演化和CME运动学进行了比较。我们发现,激波的速度明显高于同期CME的速度,高达一个数量级。另一方面,冲击波在时间上与耀斑能量释放密切相关,在所有事件中都具有很强的冲动性。这表明耀斑中压力的脉冲增加是激波的来源。在四个事件中,激波最有可能是耀斑产生的,在一个事件中,由于CME、耀斑和激波的时间同步非常紧密,结果不确定。