Fractal Structures of the Carbon Nanotube System Arrays

Raïssa S. Noule, V. K. Kuetche
{"title":"Fractal Structures of the Carbon Nanotube System Arrays","authors":"Raïssa S. Noule, V. K. Kuetche","doi":"10.5772/INTECHOPEN.82306","DOIUrl":null,"url":null,"abstract":"In this work, we investigate fractals in arrays of carbon nanotubes modeled by an evolution equation derived by using a rigorous application of the reductive perturbation formalism for the Maxwell equations and for the corresponding Boltzmann kinetic equation of the distribution function of electrons in such nanomaterials. We study the integrability properties of our dynamical system by using the Weiss-Tabor-Carnevale analysis. Actually, following the leading order analysis, we write the solution in the form of series of Laurent. We also use the Kruskal ’ s simplification to find the solutions. Using the truncated Painlevé expansion, we construct the auto-Backlund transformation of the system. We take advantage of the above properties to construct a wide panel of structures with fractals properties. As a result, we unearth some typical features, namely the fractal dromion, the fractal lump, the stochastic and nonlocal fractal excitations. We also address some physical implications of the results obtained.","PeriodicalId":230850,"journal":{"name":"Fractal Analysis","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.82306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we investigate fractals in arrays of carbon nanotubes modeled by an evolution equation derived by using a rigorous application of the reductive perturbation formalism for the Maxwell equations and for the corresponding Boltzmann kinetic equation of the distribution function of electrons in such nanomaterials. We study the integrability properties of our dynamical system by using the Weiss-Tabor-Carnevale analysis. Actually, following the leading order analysis, we write the solution in the form of series of Laurent. We also use the Kruskal ’ s simplification to find the solutions. Using the truncated Painlevé expansion, we construct the auto-Backlund transformation of the system. We take advantage of the above properties to construct a wide panel of structures with fractals properties. As a result, we unearth some typical features, namely the fractal dromion, the fractal lump, the stochastic and nonlocal fractal excitations. We also address some physical implications of the results obtained.
碳纳米管系统阵列的分形结构
在这项工作中,我们研究了碳纳米管阵列中的分形,该分形是通过严格应用麦克斯韦方程的约化微扰形式和相应的纳米材料中电子分布函数的玻尔兹曼动力学方程导出的演化方程来模拟的。利用weiss - taborr - carnevale分析方法研究了动力系统的可积性。实际上,根据前阶分析,我们把解写成洛朗级数的形式。我们也用Kruskal简化法来求解。利用截断的painlevevl展开,构造了系统的自backlund变换。我们利用上述属性来构造具有分形属性的宽面板结构。由此,我们发现了一些典型的特征,即分形凸起、分形块、随机和非局部分形激励。我们还讨论了所得结果的一些物理含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信