M. Barbouche, F. Krout, M. Chiha, K. Charradi, A. Zakarya, R. Chtourou
{"title":"The first Tunisian fuel cell test station","authors":"M. Barbouche, F. Krout, M. Chiha, K. Charradi, A. Zakarya, R. Chtourou","doi":"10.1109/ICEESA.2013.6578369","DOIUrl":null,"url":null,"abstract":"Great efforts are presently being undertaken to develop fuel cell applications. In this study, a design and realization of a fuel cell test station is described. The control of the stack temperature and the optimization of some parameters, such as the acquisition and equilibrium time for each value of the current density are necessary steps for an objective and trustworthy comparison of the performance data. Our test bench comprises two major parts hardware and software. The hardware part comprises an electrical cabinet, a power supply, an acquisition chain, an electronic load, mass flow controllers, temperature controller, solenoid valves, and solid state relay. The assemblies of the different parts of the test station are made considering our project objectives, such as, security, size (Length: 1000mm, Width: 800mm, Height: 1900mm), accessibility and mobility...etc. The software part includes not only the development of the pipelines and instrumentations diagrams but also the design of the rack using solid-works software. An interface was developed in the LABVIEW environment to enable mass flow controller and the solenoid valves control. It also allows the automatic data acquisition (fuel cell power, temperature and pressure). Preliminary measurements are made with a PEMFC (25 cm2) to make out the effect of temperature, relative humidity, back pressure and in the end the effect of cell number on the fuel cells power. The results may be used to find the best operating conditions.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Great efforts are presently being undertaken to develop fuel cell applications. In this study, a design and realization of a fuel cell test station is described. The control of the stack temperature and the optimization of some parameters, such as the acquisition and equilibrium time for each value of the current density are necessary steps for an objective and trustworthy comparison of the performance data. Our test bench comprises two major parts hardware and software. The hardware part comprises an electrical cabinet, a power supply, an acquisition chain, an electronic load, mass flow controllers, temperature controller, solenoid valves, and solid state relay. The assemblies of the different parts of the test station are made considering our project objectives, such as, security, size (Length: 1000mm, Width: 800mm, Height: 1900mm), accessibility and mobility...etc. The software part includes not only the development of the pipelines and instrumentations diagrams but also the design of the rack using solid-works software. An interface was developed in the LABVIEW environment to enable mass flow controller and the solenoid valves control. It also allows the automatic data acquisition (fuel cell power, temperature and pressure). Preliminary measurements are made with a PEMFC (25 cm2) to make out the effect of temperature, relative humidity, back pressure and in the end the effect of cell number on the fuel cells power. The results may be used to find the best operating conditions.