Joint Caching and Routing in Cache Networks with Arbitrary Topology

Tian Xie, Sanchal Thakkar, Ting He, P. Mcdaniel, Quinn K. Burke
{"title":"Joint Caching and Routing in Cache Networks with Arbitrary Topology","authors":"Tian Xie, Sanchal Thakkar, Ting He, P. Mcdaniel, Quinn K. Burke","doi":"10.1109/ICDCS54860.2022.00015","DOIUrl":null,"url":null,"abstract":"In-network caching and flexible routing are two of the most celebrated advantages of next generation network infrastructures. Yet few solutions are available for jointly optimizing caching and routing that provide performance guarantees for an arbitrary topology. We take a holistic approach towards this fundamental problem by analyzing its complexity in all the cases and developing polynomial-time algorithms with approximation guarantees in important special cases. We also reveal the fundamental challenge in achieving guaranteed approximation in the general case and propose an alternating optimization algorithm with good performance and fast convergence. Our algorithms have demonstrated superior performance in both routing cost and congestion compared to the state-of-the-art solutions in evaluations based on real topology and request traces.","PeriodicalId":225883,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS54860.2022.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In-network caching and flexible routing are two of the most celebrated advantages of next generation network infrastructures. Yet few solutions are available for jointly optimizing caching and routing that provide performance guarantees for an arbitrary topology. We take a holistic approach towards this fundamental problem by analyzing its complexity in all the cases and developing polynomial-time algorithms with approximation guarantees in important special cases. We also reveal the fundamental challenge in achieving guaranteed approximation in the general case and propose an alternating optimization algorithm with good performance and fast convergence. Our algorithms have demonstrated superior performance in both routing cost and congestion compared to the state-of-the-art solutions in evaluations based on real topology and request traces.
任意拓扑缓存网络中的联合缓存与路由
网络内缓存和灵活路由是下一代网络基础设施的两个最著名的优点。然而,很少有解决方案可用于联合优化缓存和路由,为任意拓扑提供性能保证。我们通过分析其在所有情况下的复杂性,并在重要的特殊情况下开发具有近似保证的多项式时间算法,采取整体方法来解决这个基本问题。我们还揭示了在一般情况下实现保证逼近的基本挑战,并提出了一种性能良好、收敛速度快的交替优化算法。与基于真实拓扑和请求跟踪的最先进的评估方案相比,我们的算法在路由成本和拥塞方面都表现出了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信