MPCA-ARDA for solving course timetabling problems

A. Abuhamdah, M. Ayob
{"title":"MPCA-ARDA for solving course timetabling problems","authors":"A. Abuhamdah, M. Ayob","doi":"10.1109/DMO.2011.5976523","DOIUrl":null,"url":null,"abstract":"This work presents a hybridization between Multi-Neighborhood Particle Collision Algorithm (MPCA) and Adaptive Randomized Descent Algorithm (ARDA) acceptance criterion to solve university course timetabling problems. The aim of this work is to produce an effective algorithm for assigning a set of courses, lecturers and students to a specific number of rooms and timeslots, subject to a set of constraints. The structure of the MPCA-ARDA resembles a Hybrid Particle Collision Algorithm (HPCA) structure. The basic difference is that MPCA-ARDA hybridize MPCA and ARDA acceptance criterion, whilst HPCA, hybridize MPCA and great deluge acceptance criterion. In other words, MPCA-ARDA employ adaptive acceptance criterion, whilst HPCA, employ deterministic acceptance criterion. Therefore, MPCA-ARDA has better capability of escaping from local optima compared to HPCA and MPCA. MPCA-ARDA attempts to enhance the trial solution by exploring different neighborhood structures to overcome the limitation in HPCA and MPCA. Results tested on Socha benchmark datasets show that, MPCA-ARDA is able to produce significantly good quality solutions within a reasonable time and outperformed some other approaches in some instances.","PeriodicalId":436393,"journal":{"name":"2011 3rd Conference on Data Mining and Optimization (DMO)","volume":"83 5 Pt 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd Conference on Data Mining and Optimization (DMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMO.2011.5976523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work presents a hybridization between Multi-Neighborhood Particle Collision Algorithm (MPCA) and Adaptive Randomized Descent Algorithm (ARDA) acceptance criterion to solve university course timetabling problems. The aim of this work is to produce an effective algorithm for assigning a set of courses, lecturers and students to a specific number of rooms and timeslots, subject to a set of constraints. The structure of the MPCA-ARDA resembles a Hybrid Particle Collision Algorithm (HPCA) structure. The basic difference is that MPCA-ARDA hybridize MPCA and ARDA acceptance criterion, whilst HPCA, hybridize MPCA and great deluge acceptance criterion. In other words, MPCA-ARDA employ adaptive acceptance criterion, whilst HPCA, employ deterministic acceptance criterion. Therefore, MPCA-ARDA has better capability of escaping from local optima compared to HPCA and MPCA. MPCA-ARDA attempts to enhance the trial solution by exploring different neighborhood structures to overcome the limitation in HPCA and MPCA. Results tested on Socha benchmark datasets show that, MPCA-ARDA is able to produce significantly good quality solutions within a reasonable time and outperformed some other approaches in some instances.
MPCA-ARDA用于解决课程排课问题
提出了一种融合多邻域粒子碰撞算法(MPCA)和自适应随机下降算法(ARDA)的可接受准则来解决大学课程排课问题。这项工作的目的是产生一种有效的算法,在一组约束条件下,将一组课程、讲师和学生分配到特定数量的房间和时间段。MPCA-ARDA的结构类似于混合粒子碰撞算法(HPCA)的结构。基本区别在于MPCA-ARDA是MPCA和ARDA验收标准的杂交,而HPCA是MPCA和大洪水验收标准的杂交。即MPCA-ARDA采用自适应接受准则,HPCA采用确定性接受准则。因此,与HPCA和MPCA相比,MPCA- arda具有更好的逃避局部最优的能力。MPCA- arda试图通过探索不同的邻域结构来改进试验解,以克服HPCA和MPCA的局限性。在Socha基准数据集上的测试结果表明,MPCA-ARDA能够在合理的时间内产生明显的高质量的解决方案,并且在某些情况下优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信