MTJ-Based p-Bit Designs for Enhanced Tunability

Saleh Bunaiyan, Feras Al-Dirini
{"title":"MTJ-Based p-Bit Designs for Enhanced Tunability","authors":"Saleh Bunaiyan, Feras Al-Dirini","doi":"10.1109/NMDC46933.2022.10052369","DOIUrl":null,"url":null,"abstract":"Probabilistic bits (p-bits) can be viewed as tunable random number generators (RNGs), whose stochasticity coupled with their tunability makes them enablers for an emerging class of applications, including probabilistic computing. Their tunability is the feature that makes them unique to conventional RNGs. This paper studies the tunability range of existing p-bit designs reported in the literature, highlighting that existing designs have a limited input voltage range within which the p-bit’s stochastic response can be tuned, on the order of sub 0.5 V. This may greatly limit their scalability in large p-bit networks. Accordingly, this work proposes several variant p-bit designs that enable a wider input voltage tunability range and a more continuous response for p-bits. The designs employ both bipolar and continuous stochastic MTJs, and demonstrate an enhancement in the tunability range beyond 4 V (close to half of the supply voltage range).","PeriodicalId":155950,"journal":{"name":"2022 IEEE Nanotechnology Materials and Devices Conference (NMDC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Nanotechnology Materials and Devices Conference (NMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC46933.2022.10052369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Probabilistic bits (p-bits) can be viewed as tunable random number generators (RNGs), whose stochasticity coupled with their tunability makes them enablers for an emerging class of applications, including probabilistic computing. Their tunability is the feature that makes them unique to conventional RNGs. This paper studies the tunability range of existing p-bit designs reported in the literature, highlighting that existing designs have a limited input voltage range within which the p-bit’s stochastic response can be tuned, on the order of sub 0.5 V. This may greatly limit their scalability in large p-bit networks. Accordingly, this work proposes several variant p-bit designs that enable a wider input voltage tunability range and a more continuous response for p-bits. The designs employ both bipolar and continuous stochastic MTJs, and demonstrate an enhancement in the tunability range beyond 4 V (close to half of the supply voltage range).
基于mtj的p位增强可调性设计
概率比特(p-bits)可以看作是可调随机数生成器(rng),其随机性和可调性使其成为新兴应用类别的推动者,包括概率计算。它们的可调节性是传统rng所独有的特点。本文研究了文献中报道的现有p位设计的可调谐范围,强调现有设计具有有限的输入电压范围,在该范围内p位的随机响应可以调谐,约为0.5 V。这可能会极大地限制它们在大型p位网络中的可扩展性。因此,本研究提出了几种不同的p位设计,以实现更宽的输入电压可调范围和更连续的p位响应。该设计采用双极和连续随机mtj,并在超过4 V(接近电源电压范围的一半)的可调性范围内得到增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信