Improve the chatbot performance for the DB-CALL system using a hybrid method and a domain corpus

Huang Jinxia, Oh-Woog Kwon, Kyung-Soon Lee, Young-Kil Kim
{"title":"Improve the chatbot performance for the DB-CALL system using a hybrid method and a domain corpus","authors":"Huang Jinxia, Oh-Woog Kwon, Kyung-Soon Lee, Young-Kil Kim","doi":"10.14705/rpnet.2018.26.820","DOIUrl":null,"url":null,"abstract":"This paper presents a chatbot for a Dialogue-Based Computer Assisted Language Learning (DB-CALL) system. The chatbot helps users learn language via free conversations. To improve the chatbot performance, this paper adopts a Neural Machine Translation (NMT) engine to combine with an existing search-based engine, and also extracts a small domain corpus for the topics of the DB-CALL system so that the chabot’s responses could be more related to the conversation topics. As a result of user evaluations, the performance of the chatbot was improved by using hybrid methods, achieving performance comparable to existing systems. The automatically extracted domain corpus has little help or even declines the chatbot performance as an auxiliary module of the DB-CALL system.","PeriodicalId":138095,"journal":{"name":"Future-proof CALL: language learning as exploration and encounters – short papers from EUROCALL 2018","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future-proof CALL: language learning as exploration and encounters – short papers from EUROCALL 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14705/rpnet.2018.26.820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a chatbot for a Dialogue-Based Computer Assisted Language Learning (DB-CALL) system. The chatbot helps users learn language via free conversations. To improve the chatbot performance, this paper adopts a Neural Machine Translation (NMT) engine to combine with an existing search-based engine, and also extracts a small domain corpus for the topics of the DB-CALL system so that the chabot’s responses could be more related to the conversation topics. As a result of user evaluations, the performance of the chatbot was improved by using hybrid methods, achieving performance comparable to existing systems. The automatically extracted domain corpus has little help or even declines the chatbot performance as an auxiliary module of the DB-CALL system.
使用混合方法和领域语料库提高DB-CALL系统的聊天机器人性能
提出了一种基于对话的计算机辅助语言学习(DB-CALL)系统的聊天机器人。聊天机器人通过自由对话帮助用户学习语言。为了提高聊天机器人的性能,本文采用神经机器翻译(NMT)引擎与现有的基于搜索的引擎相结合,并对DB-CALL系统的主题提取一个小的领域语料库,使聊天机器人的响应与对话主题更加相关。通过用户评估,通过使用混合方法提高了聊天机器人的性能,达到了与现有系统相当的性能。自动提取的领域语料库作为DB-CALL系统的辅助模块,对聊天机器人的性能帮助不大,甚至会降低聊天机器人的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信