A Fast Decomposition Method to Solve SCOPF Empowered by Parallel Computing

D. Rodriguez, J. Gers, D. Gomez, Wilmer Garzón, D. Álvarez, S. Rivera
{"title":"A Fast Decomposition Method to Solve SCOPF Empowered by Parallel Computing","authors":"D. Rodriguez, J. Gers, D. Gomez, Wilmer Garzón, D. Álvarez, S. Rivera","doi":"10.1109/PESGM48719.2022.9916694","DOIUrl":null,"url":null,"abstract":"This paper shows a heterogeneous and parallel computing (PHC) methodology applied to the Security Constraint Optimal Power Flow problem (SCOPF). The methodology used an original decomposition of base and contingency cases for the SCOPF and solved the problem through constraint handling, droop control and PV/PQ switching. PHC architecture was based on GPU and CPU to accelerate power flow calculations and parallelize contingency evaluations. The methodology was tested on power grids with sizes from 500 to 20,000 buses with promising results. The methodology allows power system optimization while guaranteeing power system security in N-1 scenarios in time frames appropriate for power system operation.","PeriodicalId":388672,"journal":{"name":"2022 IEEE Power & Energy Society General Meeting (PESGM)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM48719.2022.9916694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper shows a heterogeneous and parallel computing (PHC) methodology applied to the Security Constraint Optimal Power Flow problem (SCOPF). The methodology used an original decomposition of base and contingency cases for the SCOPF and solved the problem through constraint handling, droop control and PV/PQ switching. PHC architecture was based on GPU and CPU to accelerate power flow calculations and parallelize contingency evaluations. The methodology was tested on power grids with sizes from 500 to 20,000 buses with promising results. The methodology allows power system optimization while guaranteeing power system security in N-1 scenarios in time frames appropriate for power system operation.
基于并行计算的SCOPF快速分解求解方法
本文提出了一种应用于安全约束最优潮流问题(SCOPF)的异构并行计算方法。该方法采用了对SCOPF的基本情况和偶然性情况的原始分解,并通过约束处理、下垂控制和PV/PQ切换来解决问题。基于GPU和CPU的PHC架构加速了潮流计算,并行化了偶然性评估。该方法在规模从500到20,000辆公交车的电网上进行了测试,结果令人满意。该方法允许电力系统优化,同时在适合电力系统运行的时间框架内保证N-1场景下的电力系统安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信