Learning Applied to Successive Approximation Algorithms

G. Saridis
{"title":"Learning Applied to Successive Approximation Algorithms","authors":"G. Saridis","doi":"10.1109/TSSC.1970.300282","DOIUrl":null,"url":null,"abstract":"A linear reinforcement learning technique is proposed to provide a memory and thus accelerate the convergence of successive approximation algorithms. The learning scheme is used to update weighting coefficients applied to the components of the correction terms of the algorithm. A direction of the search approaching the direction of a \"ridge\" will result in a gradient peak-seeking method which accelerates considerably the convergence to a neighborhood of the extremum. In a stochastic approximation algorithm the learning scheme provides the required memory to establish a consistent direction or search insensitive to perturbations introduced by the random variables involved. The accelerated algorithms and the respective proofs of convergence are presented. Illustrative examples demonstrate the validity of the proposed algorithms.","PeriodicalId":120916,"journal":{"name":"IEEE Trans. Syst. Sci. Cybern.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1970-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Syst. Sci. Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSC.1970.300282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

A linear reinforcement learning technique is proposed to provide a memory and thus accelerate the convergence of successive approximation algorithms. The learning scheme is used to update weighting coefficients applied to the components of the correction terms of the algorithm. A direction of the search approaching the direction of a "ridge" will result in a gradient peak-seeking method which accelerates considerably the convergence to a neighborhood of the extremum. In a stochastic approximation algorithm the learning scheme provides the required memory to establish a consistent direction or search insensitive to perturbations introduced by the random variables involved. The accelerated algorithms and the respective proofs of convergence are presented. Illustrative examples demonstrate the validity of the proposed algorithms.
应用于连续逼近算法的学习
提出了一种线性强化学习技术来提供记忆,从而加速逐次逼近算法的收敛。该学习方案用于更新应用于算法校正项分量的加权系数。当搜索的方向接近“脊”的方向时,将产生一种梯度寻峰方法,这种方法大大加快了收敛到极值附近的速度。在随机逼近算法中,学习方案提供所需的记忆来建立一致的方向或对所涉及的随机变量引入的扰动不敏感的搜索。给出了加速算法及其收敛性证明。算例验证了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信