Fusing Ultra-wideband Range Measurements with IMU for Mobile Robot Localization

Shanwen Guan, Xiao-peng Luo
{"title":"Fusing Ultra-wideband Range Measurements with IMU for Mobile Robot Localization","authors":"Shanwen Guan, Xiao-peng Luo","doi":"10.1109/ICICIP53388.2021.9642157","DOIUrl":null,"url":null,"abstract":"Due to the widespread use of robotics in recent years, accurate localization and tracking have become active research topic. As a low-power wireless communication and sensing technology, Ultra-wideband (UWB) has relatively accurate positioning and sensing capabilities, and has broad application prospects for precise positioning and other fields. But due to the complex environment and obstacles, the non-line-of-sight(NLOS) error generated by it will be severe. It seriously affects the position estimation of the system, resulting in low positioning accuracy and poor robustness. Improving the accuracy and robustness of the UWB positioning technology in a complex environment, a method based on the fusion of UWB and IMU data, which effectively combines global positioning and local positioning, positioning, using LSTM neural network algorithm processes the IMU data, and The EKF algorithm merge the IMU and UWB. Compared with the traditional UWB positioning method, this method can effectively suppress Control the influence of NLOS interference in positioning estimation and improve the accuracy and robustness of the positioning system.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the widespread use of robotics in recent years, accurate localization and tracking have become active research topic. As a low-power wireless communication and sensing technology, Ultra-wideband (UWB) has relatively accurate positioning and sensing capabilities, and has broad application prospects for precise positioning and other fields. But due to the complex environment and obstacles, the non-line-of-sight(NLOS) error generated by it will be severe. It seriously affects the position estimation of the system, resulting in low positioning accuracy and poor robustness. Improving the accuracy and robustness of the UWB positioning technology in a complex environment, a method based on the fusion of UWB and IMU data, which effectively combines global positioning and local positioning, positioning, using LSTM neural network algorithm processes the IMU data, and The EKF algorithm merge the IMU and UWB. Compared with the traditional UWB positioning method, this method can effectively suppress Control the influence of NLOS interference in positioning estimation and improve the accuracy and robustness of the positioning system.
基于IMU的超宽带距离测量融合移动机器人定位
近年来,由于机器人技术的广泛应用,精确定位和跟踪成为活跃的研究课题。超宽带(UWB)作为一种低功耗的无线通信和传感技术,具有相对精确的定位和传感能力,在精确定位等领域有着广阔的应用前景。但由于复杂的环境和障碍物,其产生的非视距误差会很严重。严重影响系统的位置估计,导致定位精度低,鲁棒性差。为了提高UWB定位技术在复杂环境下的精度和鲁棒性,提出了一种基于UWB和IMU数据融合的方法,将全球定位和局部定位有效地结合起来,利用LSTM神经网络算法对IMU数据进行处理,并用EKF算法对IMU和UWB进行合并。与传统的超宽带定位方法相比,该方法能有效抑制控制NLOS干扰对定位估计的影响,提高定位系统的精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信