Multi-fingered Tactile Servoing for Grasping Adjustment under Partial Observation

Hanzhong Liu, Bidan Huang, Qiang Li, Yu Zheng, Yonggen Ling, Wangwei Lee, Yi Liu, Ya-Yen Tsai, Chenguang Yang
{"title":"Multi-fingered Tactile Servoing for Grasping Adjustment under Partial Observation","authors":"Hanzhong Liu, Bidan Huang, Qiang Li, Yu Zheng, Yonggen Ling, Wangwei Lee, Yi Liu, Ya-Yen Tsai, Chenguang Yang","doi":"10.1109/IROS47612.2022.9981464","DOIUrl":null,"url":null,"abstract":"Grasping of objects using multi-fingered robotic hands often fails due to small uncertainties in the hand motion control and the object's pose estimation. To tackle this problem, we propose a grasping adjustment strategy based on tactile seroving. Our technique employs feedback from a sensorized multi-fingered robotic hand to collaboratively servo the fingers and palm to achieve the desired grasp. We demonstrate the performance of our method through simulation and physical experiments by having a robot grasp different objects under conditions of variable uncertainty. The results show that our approach achieved a higher success rate and tolerated greater uncertainty than an open-looped grasp.","PeriodicalId":431373,"journal":{"name":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS47612.2022.9981464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Grasping of objects using multi-fingered robotic hands often fails due to small uncertainties in the hand motion control and the object's pose estimation. To tackle this problem, we propose a grasping adjustment strategy based on tactile seroving. Our technique employs feedback from a sensorized multi-fingered robotic hand to collaboratively servo the fingers and palm to achieve the desired grasp. We demonstrate the performance of our method through simulation and physical experiments by having a robot grasp different objects under conditions of variable uncertainty. The results show that our approach achieved a higher success rate and tolerated greater uncertainty than an open-looped grasp.
局部观测下多指触觉伺服抓取调整
由于手部运动控制和物体姿态估计的不确定性较小,使用多指机械手抓取物体往往会失败。为了解决这一问题,我们提出了一种基于触觉服务的抓取调整策略。我们的技术利用来自传感的多指机器人手的反馈来协同伺服手指和手掌以实现所需的抓取。我们通过仿真和物理实验证明了我们的方法的性能,让机器人在可变不确定性的条件下抓取不同的物体。结果表明,与开环抓取相比,我们的方法获得了更高的成功率和更大的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信