Clustering in the membership embedding space

M. Filippone, F. Masulli, S. Rovetta
{"title":"Clustering in the membership embedding space","authors":"M. Filippone, F. Masulli, S. Rovetta","doi":"10.1504/IJKESDP.2009.028988","DOIUrl":null,"url":null,"abstract":"In several applications of data mining to high-dimensional data, clustering techniques developed for low-to-moderate sized problems obtain unsatisfactory results. This is an aspect of the curse of dimensionality issue. A traditional approach is based on representing the data in a suitable similarity space instead of the original high-dimensional attribute space. In this paper, we propose a solution to this problem using the projection of data onto a so-called membership embedding space obtained by using the memberships of data points on fuzzy sets centred on some prototypes. This approach can increase the efficiency of the popular fuzzy C-means method in the presence of high-dimensional datasets, as we show in an experimental comparison. We also present a constructive method for prototypes selection based on simulated annealing that is viable for semi-supervised clustering problems.","PeriodicalId":347123,"journal":{"name":"Int. J. Knowl. Eng. Soft Data Paradigms","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Soft Data Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKESDP.2009.028988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In several applications of data mining to high-dimensional data, clustering techniques developed for low-to-moderate sized problems obtain unsatisfactory results. This is an aspect of the curse of dimensionality issue. A traditional approach is based on representing the data in a suitable similarity space instead of the original high-dimensional attribute space. In this paper, we propose a solution to this problem using the projection of data onto a so-called membership embedding space obtained by using the memberships of data points on fuzzy sets centred on some prototypes. This approach can increase the efficiency of the popular fuzzy C-means method in the presence of high-dimensional datasets, as we show in an experimental comparison. We also present a constructive method for prototypes selection based on simulated annealing that is viable for semi-supervised clustering problems.
隶属度嵌入空间中的聚类
在数据挖掘对高维数据的一些应用中,为中低规模问题开发的聚类技术得到了令人不满意的结果。这是维度诅咒问题的一个方面。传统的方法是基于在合适的相似空间中表示数据,而不是原始的高维属性空间。在本文中,我们提出了一个解决这个问题的方法,使用数据投影到一个所谓的隶属度嵌入空间上,这个隶属度嵌入空间是利用以某些原型为中心的模糊集中的数据点的隶属度得到的。正如我们在实验比较中所示,这种方法可以在高维数据集存在的情况下提高流行的模糊c均值方法的效率。我们还提出了一种基于模拟退火的原型选择构造方法,该方法适用于半监督聚类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信