Liliya Kharevych, Boris A. Springborn, P. Schröder
{"title":"Discrete conformal mappings via circle patterns","authors":"Liliya Kharevych, Boris A. Springborn, P. Schröder","doi":"10.1145/1198555.1198665","DOIUrl":null,"url":null,"abstract":"We introduce a novel method for the construction of discrete conformal mappings from (regions of) embedded meshes to the plane. Our approach is based on circle patterns, i.e., arrangements of circles---one for each face---with prescribed intersection angles. Given these angles the circle radii follow as the unique minimizer of a convex energy. The method has two principal advantages over earlier approaches based on discrete harmonic mappings: (1) it supports very flexible boundary conditions ranging from natural boundaries to control of the boundary shape via prescribed curvatures; (2) the solution is based on a convex energy as a function of logarithmic radius variables with simple explicit expressions for gradients and Hessians, greatly facilitating robust and efficient numerical treatment. We demonstrate the versatility and performance of our algorithm with a variety of examples.","PeriodicalId":192758,"journal":{"name":"ACM SIGGRAPH 2005 Courses","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2005 Courses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1198555.1198665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We introduce a novel method for the construction of discrete conformal mappings from (regions of) embedded meshes to the plane. Our approach is based on circle patterns, i.e., arrangements of circles---one for each face---with prescribed intersection angles. Given these angles the circle radii follow as the unique minimizer of a convex energy. The method has two principal advantages over earlier approaches based on discrete harmonic mappings: (1) it supports very flexible boundary conditions ranging from natural boundaries to control of the boundary shape via prescribed curvatures; (2) the solution is based on a convex energy as a function of logarithmic radius variables with simple explicit expressions for gradients and Hessians, greatly facilitating robust and efficient numerical treatment. We demonstrate the versatility and performance of our algorithm with a variety of examples.