Discrete conformal mappings via circle patterns

Liliya Kharevych, Boris A. Springborn, P. Schröder
{"title":"Discrete conformal mappings via circle patterns","authors":"Liliya Kharevych, Boris A. Springborn, P. Schröder","doi":"10.1145/1198555.1198665","DOIUrl":null,"url":null,"abstract":"We introduce a novel method for the construction of discrete conformal mappings from (regions of) embedded meshes to the plane. Our approach is based on circle patterns, i.e., arrangements of circles---one for each face---with prescribed intersection angles. Given these angles the circle radii follow as the unique minimizer of a convex energy. The method has two principal advantages over earlier approaches based on discrete harmonic mappings: (1) it supports very flexible boundary conditions ranging from natural boundaries to control of the boundary shape via prescribed curvatures; (2) the solution is based on a convex energy as a function of logarithmic radius variables with simple explicit expressions for gradients and Hessians, greatly facilitating robust and efficient numerical treatment. We demonstrate the versatility and performance of our algorithm with a variety of examples.","PeriodicalId":192758,"journal":{"name":"ACM SIGGRAPH 2005 Courses","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2005 Courses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1198555.1198665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a novel method for the construction of discrete conformal mappings from (regions of) embedded meshes to the plane. Our approach is based on circle patterns, i.e., arrangements of circles---one for each face---with prescribed intersection angles. Given these angles the circle radii follow as the unique minimizer of a convex energy. The method has two principal advantages over earlier approaches based on discrete harmonic mappings: (1) it supports very flexible boundary conditions ranging from natural boundaries to control of the boundary shape via prescribed curvatures; (2) the solution is based on a convex energy as a function of logarithmic radius variables with simple explicit expressions for gradients and Hessians, greatly facilitating robust and efficient numerical treatment. We demonstrate the versatility and performance of our algorithm with a variety of examples.
通过圆图案的离散保角映射
本文提出了一种构造嵌入网格到平面的离散保形映射的新方法。我们的方法是基于圆形图案,即圆形的排列——每个面一个——具有规定的交点角。给定这些角度,圆半径遵循作为凸能量的唯一最小值。与先前基于离散调和映射的方法相比,该方法有两个主要优点:(1)它支持非常灵活的边界条件,从自然边界到通过规定曲率控制边界形状;(2)该解基于凸能量作为对数半径变量的函数,具有简单的梯度和Hessians显式表达式,极大地促进了鲁棒性和高效率的数值处理。我们用各种各样的例子来证明我们的算法的通用性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信