Noise removal of CBCT images using an adaptive anisotropic diffusion filter

E. Yılmaz, T. Kayikçioglu, S. Kayıpmaz
{"title":"Noise removal of CBCT images using an adaptive anisotropic diffusion filter","authors":"E. Yılmaz, T. Kayikçioglu, S. Kayıpmaz","doi":"10.1109/TSP.2017.8076067","DOIUrl":null,"url":null,"abstract":"In this work we proposed an adaptive anisotropic filtering method for removing unwanted noise information that may occur in cone beam computed tomography (CBCT) images. The data used in this study consist of 1200 different image sections obtained from 30 different patients who came to Karadeniz Technical University, Faculty of Dentistry, Department of Oral Diagnosis and Radiology Clinic for routine controls. At first, to identify 2D image sections that do not contain noise information, we measured noise levels in CBCT dataset sections using a noise level estimation method. Then, we applied different levels of noise to those noise-free images. We used anisotropic diffusion filter (Perona and Malik's filter), an automatic anisotropic filter (Tsiotsios and Petrou's method), and our adaptive anisotropic filtering method to remove noise information from those images. Afterward, we obtained peak signal to noise ratio (PSNR) and mean absolute error (MAE) values derived from the results. Proposed adaptive anisotropic diffusion filter seems to be a good choice for removing noise that may occur on CBCT image sections.","PeriodicalId":256818,"journal":{"name":"2017 40th International Conference on Telecommunications and Signal Processing (TSP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 40th International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2017.8076067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this work we proposed an adaptive anisotropic filtering method for removing unwanted noise information that may occur in cone beam computed tomography (CBCT) images. The data used in this study consist of 1200 different image sections obtained from 30 different patients who came to Karadeniz Technical University, Faculty of Dentistry, Department of Oral Diagnosis and Radiology Clinic for routine controls. At first, to identify 2D image sections that do not contain noise information, we measured noise levels in CBCT dataset sections using a noise level estimation method. Then, we applied different levels of noise to those noise-free images. We used anisotropic diffusion filter (Perona and Malik's filter), an automatic anisotropic filter (Tsiotsios and Petrou's method), and our adaptive anisotropic filtering method to remove noise information from those images. Afterward, we obtained peak signal to noise ratio (PSNR) and mean absolute error (MAE) values derived from the results. Proposed adaptive anisotropic diffusion filter seems to be a good choice for removing noise that may occur on CBCT image sections.
基于自适应各向异性扩散滤波器的CBCT图像去噪
在这项工作中,我们提出了一种自适应各向异性滤波方法,用于去除锥束计算机断层扫描(CBCT)图像中可能出现的有害噪声信息。本研究中使用的数据包括来自30名不同患者的1200个不同的图像切片,这些患者来到卡拉德尼兹技术大学,牙科学院,口腔诊断和放射科诊所作为常规对照。首先,为了识别不包含噪声信息的二维图像部分,我们使用噪声水平估计方法测量了CBCT数据集部分的噪声水平。然后,我们对这些无噪声的图像施加不同程度的噪声。我们使用各向异性扩散滤波(Perona and Malik’s filter)、自动各向异性滤波(Tsiotsios and Petrou’s method)和自适应各向异性滤波方法来去除图像中的噪声信息。然后,我们得到了峰值信噪比(PSNR)和平均绝对误差(MAE)值。提出的自适应各向异性扩散滤波器是去除CBCT图像剖面上可能出现的噪声的一种很好的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信