A Multistage Solution of the Template-Layout Problem

M. J. Haims, H. Freeman
{"title":"A Multistage Solution of the Template-Layout Problem","authors":"M. J. Haims, H. Freeman","doi":"10.1109/TSSC.1970.300290","DOIUrl":null,"url":null,"abstract":"The template-layout problem is to determine how to cut irregular-shaped two-dimensional pieces out of given stock sheets in an optimum manner without making an exhaustive search of all possible arrangements of the pieces. An algorithm is described for solving template-layout problems with a digital computer. The method of solution requires that the irregular shapes be enclosed, singly or in combination, in minimum area rectangles called modules. Individual modules will contain from one to perhaps eight optimally fitted irregular pieces. The modules are then packed into the given stock sheet(s) so as to optimize a specified objective function. The packing is carried out with a dynamic programming algorithm, which converts the multivariable problem into a multistage one. Successive iterations of the algorithm are used to determine whether higher order modules (containing more irregular-shaped pieces) improve the solution. A detailed description of the algorithm is given. An illustrative example is included and its computer solution is described. The paper concludes with an extension of the algorithm to an improved version which can be expected to yield solutions more closely approaching the true optimum.","PeriodicalId":120916,"journal":{"name":"IEEE Trans. Syst. Sci. Cybern.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1970-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Syst. Sci. Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSC.1970.300290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

The template-layout problem is to determine how to cut irregular-shaped two-dimensional pieces out of given stock sheets in an optimum manner without making an exhaustive search of all possible arrangements of the pieces. An algorithm is described for solving template-layout problems with a digital computer. The method of solution requires that the irregular shapes be enclosed, singly or in combination, in minimum area rectangles called modules. Individual modules will contain from one to perhaps eight optimally fitted irregular pieces. The modules are then packed into the given stock sheet(s) so as to optimize a specified objective function. The packing is carried out with a dynamic programming algorithm, which converts the multivariable problem into a multistage one. Successive iterations of the algorithm are used to determine whether higher order modules (containing more irregular-shaped pieces) improve the solution. A detailed description of the algorithm is given. An illustrative example is included and its computer solution is described. The paper concludes with an extension of the algorithm to an improved version which can be expected to yield solutions more closely approaching the true optimum.
模板布局问题的多阶段求解方法
模板布局问题是在不穷尽搜索所有可能的排列方式的情况下,确定如何以最佳方式从给定的库存纸中切割不规则形状的二维零件。介绍了一种用数字计算机解决模板排版问题的算法。解的方法要求不规则形状被单独或组合在最小面积的矩形中,称为模块。单个模块将包含1到8个最佳匹配的不规则部件。然后将模块打包到给定的库存表中,以便优化指定的目标函数。采用动态规划算法进行包装,将多变量问题转化为多阶段问题。算法的连续迭代用于确定高阶模块(包含更多不规则形状的块)是否改进了解决方案。给出了该算法的详细描述。给出了一个实例,并给出了计算机解决方案。最后,本文将该算法扩展为一个改进的版本,该版本可以期望产生更接近真正最优的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信