Gatica: Linked Sensed Data Enrichment and Analytics Middleware for IoT Gateways

Soheil Qanbari, Negar Behinaein, R. Rahimzadeh, S. Dustdar
{"title":"Gatica: Linked Sensed Data Enrichment and Analytics Middleware for IoT Gateways","authors":"Soheil Qanbari, Negar Behinaein, R. Rahimzadeh, S. Dustdar","doi":"10.1109/FICLOUD.2015.37","DOIUrl":null,"url":null,"abstract":"Raw sensed data lacks semantics. This poses a challenge to apply analytics directly to raw IoT sensor data. Such operational data requires an intensive enrichment processes to drive value. Pragmatic use of naming conventions and taxonomies can increase the quality of data and make it more interpretable. In this paper, we incorporate semantic and linked data technologies and offer a middleware called Gatica, to dynamically inject semantics to make the raw streaming data of an IoT gateway \"Rich\" on the device layer. Gatica collects the real-time sensor data, enriches them using annotations then transforms and exposes them in RDF triples, and finally streams RDF objects to the analytic endpoint for querying the linked sensor streaming data. Various analytic applications can utilize our middleware by sending SPARQL requests over the sensor network to our query interface and retrieving the results. Our middleware offers the ability to discover hidden patterns of mutually correlated variables and uncover actionable information within raw data for more utility. This paper details Gatica's architecture together with its implementation.","PeriodicalId":182204,"journal":{"name":"2015 3rd International Conference on Future Internet of Things and Cloud","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Future Internet of Things and Cloud","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FICLOUD.2015.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Raw sensed data lacks semantics. This poses a challenge to apply analytics directly to raw IoT sensor data. Such operational data requires an intensive enrichment processes to drive value. Pragmatic use of naming conventions and taxonomies can increase the quality of data and make it more interpretable. In this paper, we incorporate semantic and linked data technologies and offer a middleware called Gatica, to dynamically inject semantics to make the raw streaming data of an IoT gateway "Rich" on the device layer. Gatica collects the real-time sensor data, enriches them using annotations then transforms and exposes them in RDF triples, and finally streams RDF objects to the analytic endpoint for querying the linked sensor streaming data. Various analytic applications can utilize our middleware by sending SPARQL requests over the sensor network to our query interface and retrieving the results. Our middleware offers the ability to discover hidden patterns of mutually correlated variables and uncover actionable information within raw data for more utility. This paper details Gatica's architecture together with its implementation.
Gatica:用于物联网网关的链接感测数据丰富和分析中间件
原始感知数据缺乏语义。这对直接将分析应用于原始物联网传感器数据提出了挑战。这样的操作数据需要密集的浓缩过程来驱动价值。实用地使用命名约定和分类法可以提高数据的质量,并使其更具可解释性。在本文中,我们结合了语义和关联数据技术,并提供了一个名为Gatica的中间件,以动态注入语义,使物联网网关的原始流数据在设备层“丰富”。Gatica收集实时传感器数据,使用注释丰富它们,然后转换并以RDF三元组的形式公开它们,最后将RDF对象流式传输到分析端点,以查询链接的传感器流数据。各种分析应用程序可以通过传感器网络向我们的查询接口发送SPARQL请求并检索结果,从而利用我们的中间件。我们的中间件能够发现相互关联变量的隐藏模式,并在原始数据中发现可操作的信息,从而获得更多实用价值。本文详细介绍了Gatica的体系结构及其实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信