Learning to Calibrate Hybrid Hyperparameters: a Study on Traffic Simulation

Wanpeng Xu, Hua Wei
{"title":"Learning to Calibrate Hybrid Hyperparameters: a Study on Traffic Simulation","authors":"Wanpeng Xu, Hua Wei","doi":"10.1145/3573900.3591113","DOIUrl":null,"url":null,"abstract":"Traffic simulation is an important computational technique that models the behavior and interactions of vehicles, pedestrians, and infrastructure in a transportation system. Calibration, which involves adjusting simulation parameters to match real-world data, is a key challenge in traffic simulation. Traffic simulators involve multiple models with hybrid hyperparameters, which could be either categorical or continuous. In this paper, we present CHy2, an approach that generates a set of hyperparameters for simulator calibration using generative adversarial imitation learning. CHy2 learns to mimic expert behavior models by rewarding hyperparameters that deceive a discriminator trained to classify policy-generated and expert trajectories. Specifically, we propose a hybrid architecture of actor-critic algorithms to handle the hybrid choices between hyperparameters. Experimental results show that CHy2 outperforms previous methods in calibrating traffic simulators.","PeriodicalId":246048,"journal":{"name":"Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573900.3591113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic simulation is an important computational technique that models the behavior and interactions of vehicles, pedestrians, and infrastructure in a transportation system. Calibration, which involves adjusting simulation parameters to match real-world data, is a key challenge in traffic simulation. Traffic simulators involve multiple models with hybrid hyperparameters, which could be either categorical or continuous. In this paper, we present CHy2, an approach that generates a set of hyperparameters for simulator calibration using generative adversarial imitation learning. CHy2 learns to mimic expert behavior models by rewarding hyperparameters that deceive a discriminator trained to classify policy-generated and expert trajectories. Specifically, we propose a hybrid architecture of actor-critic algorithms to handle the hybrid choices between hyperparameters. Experimental results show that CHy2 outperforms previous methods in calibrating traffic simulators.
学习校正混合超参数:交通仿真研究
交通仿真是一种重要的计算技术,它对交通系统中车辆、行人和基础设施的行为和相互作用进行建模。校准是交通仿真中的一个关键挑战,它涉及调整仿真参数以匹配实际数据。交通模拟器涉及多个混合超参数模型,这些模型可以是分类的,也可以是连续的。在本文中,我们提出了CHy2,一种使用生成对抗模仿学习生成一组超参数用于模拟器校准的方法。CHy2通过奖励超参数来学习模仿专家行为模型,这些超参数欺骗了经过训练的判别器来对策略生成的轨迹和专家轨迹进行分类。具体地说,我们提出了一种演员-评论家算法的混合架构来处理超参数之间的混合选择。实验结果表明,CHy2在交通模拟器标定方面优于以往的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信