Sentiment Classification on Erroneous ASR Transcripts: A Multi View Learning Approach

Sri Harsha Dumpala, I. Sheikh, Rupayan Chakraborty, Sunil Kumar Kopparapu
{"title":"Sentiment Classification on Erroneous ASR Transcripts: A Multi View Learning Approach","authors":"Sri Harsha Dumpala, I. Sheikh, Rupayan Chakraborty, Sunil Kumar Kopparapu","doi":"10.1109/SLT.2018.8639665","DOIUrl":null,"url":null,"abstract":"Sentiment classification on spoken language transcriptions has received less attention. A practical system employing the spoken language modality will have to use a language transcription from an Automatic Speech Recognition (ASR) engine which is inherently prone to errors. The main interest of this paper lies in improvement of sentiment classification on erroneous ASR transcriptions. Our aim is to improve the representation of the ASR transcripts using the manual transcripts and other modalities, like audio and visual, that are available during training but not necessarily during test conditions. We adopt an approach based on Deep Canonical Correlation Analysis (DCCA) and propose two new extensions of DCCA to enhance the ASR view using multiple modalities. We present a detailed evaluation of the performance of our approach on datasets of opinion videos (CMU-MOSI and CMU-MOSEI) collected from Youtube.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Sentiment classification on spoken language transcriptions has received less attention. A practical system employing the spoken language modality will have to use a language transcription from an Automatic Speech Recognition (ASR) engine which is inherently prone to errors. The main interest of this paper lies in improvement of sentiment classification on erroneous ASR transcriptions. Our aim is to improve the representation of the ASR transcripts using the manual transcripts and other modalities, like audio and visual, that are available during training but not necessarily during test conditions. We adopt an approach based on Deep Canonical Correlation Analysis (DCCA) and propose two new extensions of DCCA to enhance the ASR view using multiple modalities. We present a detailed evaluation of the performance of our approach on datasets of opinion videos (CMU-MOSI and CMU-MOSEI) collected from Youtube.
错误ASR转录物的情感分类:一种多视角学习方法
口语转录的情感分类受到的关注较少。使用口语模式的实际系统将不得不使用来自自动语音识别(ASR)引擎的语言转录,这本身就容易出错。本文的主要兴趣在于改进对错误ASR转录的情感分类。我们的目标是使用手动抄本和其他方式(如音频和视频)来改善ASR抄本的表示,这些方式在培训期间可用,但在测试条件下不一定可用。我们采用了一种基于深度典型相关分析(DCCA)的方法,并提出了DCCA的两个新的扩展,以增强使用多模态的ASR视图。我们对我们的方法在从Youtube收集的意见视频(CMU-MOSI和CMU-MOSEI)数据集上的性能进行了详细的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信