Effect of Mixed Precision Computing on H-Matrix Vector Multiplication in BEM Analysis

R. Ooi, T. Iwashita, Takeshi Fukaya, Akihiro Ida, Rio Yokota
{"title":"Effect of Mixed Precision Computing on H-Matrix Vector Multiplication in BEM Analysis","authors":"R. Ooi, T. Iwashita, Takeshi Fukaya, Akihiro Ida, Rio Yokota","doi":"10.1145/3368474.3368479","DOIUrl":null,"url":null,"abstract":"Hierarchical Matrix (H-matrix) is an approximation technique which splits a target dense matrix into multiple submatrices, and where a selected portion of submatrices are low-rank approximated. The technique substantially reduces both time and space complexity of dense matrix vector multiplication, and hence has been applied to numerous practical problems. In this paper, we aim to accelerate the H-matrix vector multiplication by introducing mixed precision computing, where we employ both binary64 (FP64) and binary32 (FP32) arithmetic operations. We propose three methods to introduce mixed precision computing to H-matrix vector multiplication, and then evaluate them in a boundary element method (BEM) analysis. The numerical tests examine the effects of mixed precision computing, particularly on the required simulation time and rate of convergence of the iterative (BiCG-STAB) linear solver. We confirm the effectiveness of the proposed methods.","PeriodicalId":314778,"journal":{"name":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3368474.3368479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Hierarchical Matrix (H-matrix) is an approximation technique which splits a target dense matrix into multiple submatrices, and where a selected portion of submatrices are low-rank approximated. The technique substantially reduces both time and space complexity of dense matrix vector multiplication, and hence has been applied to numerous practical problems. In this paper, we aim to accelerate the H-matrix vector multiplication by introducing mixed precision computing, where we employ both binary64 (FP64) and binary32 (FP32) arithmetic operations. We propose three methods to introduce mixed precision computing to H-matrix vector multiplication, and then evaluate them in a boundary element method (BEM) analysis. The numerical tests examine the effects of mixed precision computing, particularly on the required simulation time and rate of convergence of the iterative (BiCG-STAB) linear solver. We confirm the effectiveness of the proposed methods.
边界元分析中混合精度计算对h矩阵向量乘法的影响
层次矩阵(H-matrix)是一种逼近技术,它将一个目标密集矩阵分解成多个子矩阵,其中选取一部分子矩阵进行低秩逼近。该技术大大降低了密集矩阵向量乘法的时间和空间复杂度,因此已应用于许多实际问题。在本文中,我们的目标是通过引入混合精度计算来加速h矩阵向量乘法,其中我们同时使用binary64 (FP64)和binary32 (FP32)算术运算。提出了将混合精度计算引入h矩阵向量乘法的三种方法,并在边界元法(BEM)分析中对其进行了评价。数值试验检验了混合精度计算的影响,特别是对迭代(BiCG-STAB)线性求解器所需的模拟时间和收敛速度的影响。我们证实了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信