FitBeat: A Lightweight System for Accurate Heart Rate Measurement during Exercise

Linlin Tu, Jun Huang, Chongguang Bi, G. Xing
{"title":"FitBeat: A Lightweight System for Accurate Heart Rate Measurement during Exercise","authors":"Linlin Tu, Jun Huang, Chongguang Bi, G. Xing","doi":"10.1109/SMARTCOMP.2017.7947009","DOIUrl":null,"url":null,"abstract":"Tracking heart rate for fitness using wrist-type wearables is challenging, because of the significant noise caused by intensive wrist movements. In this paper, we present FitBeat - a lightweight system that enables accurate heart rate tracking on wrist-type wearables during intensive exercises. Unlike existing approaches that rely on computation- intensive signal processing, FitBeat integrates and augments standard filter and spectral analysis tool, which achieves comparable accuracy while significantly reducing computational overhead. FitBeat integrates contact sensing, motion sensing and simple spectral analysis algorithms to suppress various error sources. We implement FitBeat on a COTS smartwatch, and evaluate the performance of FitBeat for typical workouts of different intensities, including walking, running and riding. Experimental results involving 10 subjects show that the average error of FitBeat is around 4 beats per minute, which improves heart rate accuracy of the default heart rate tracker of Moto 360 by 10x.","PeriodicalId":193593,"journal":{"name":"2017 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2017.7947009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Tracking heart rate for fitness using wrist-type wearables is challenging, because of the significant noise caused by intensive wrist movements. In this paper, we present FitBeat - a lightweight system that enables accurate heart rate tracking on wrist-type wearables during intensive exercises. Unlike existing approaches that rely on computation- intensive signal processing, FitBeat integrates and augments standard filter and spectral analysis tool, which achieves comparable accuracy while significantly reducing computational overhead. FitBeat integrates contact sensing, motion sensing and simple spectral analysis algorithms to suppress various error sources. We implement FitBeat on a COTS smartwatch, and evaluate the performance of FitBeat for typical workouts of different intensities, including walking, running and riding. Experimental results involving 10 subjects show that the average error of FitBeat is around 4 beats per minute, which improves heart rate accuracy of the default heart rate tracker of Moto 360 by 10x.
FitBeat:在运动过程中精确测量心率的轻量级系统
使用手腕式可穿戴设备追踪健身时的心率是具有挑战性的,因为剧烈的手腕运动会产生很大的噪音。在本文中,我们介绍了FitBeat -一种轻量级系统,可以在高强度运动期间在手腕型可穿戴设备上实现准确的心率跟踪。与现有依赖于计算密集型信号处理的方法不同,FitBeat集成并增强了标准滤波器和频谱分析工具,在显著降低计算开销的同时达到了相当的精度。FitBeat集成了接触传感,运动传感和简单的光谱分析算法,以抑制各种误差源。我们在COTS智能手表上实现了FitBeat,并在不同强度的典型运动(包括步行、跑步和骑行)中评估了FitBeat的性能。涉及10名受试者的实验结果表明,FitBeat的平均误差在4次/分钟左右,将Moto 360默认心率追踪器的心率准确率提高了10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信