A SOSM Control for Induction Motor Using ANN-based Sensorless Speed and Flux Estimation under Parametric Uncertainty in FOC Control Method

Ramin Nahavandi, M. Asadi, A. Torkashvand
{"title":"A SOSM Control for Induction Motor Using ANN-based Sensorless Speed and Flux Estimation under Parametric Uncertainty in FOC Control Method","authors":"Ramin Nahavandi, M. Asadi, A. Torkashvand","doi":"10.1109/pedstc53976.2022.9767386","DOIUrl":null,"url":null,"abstract":"In this paper, a second order-sliding mode (SOSM) control strategy for Field Oriented Control (FOC) of induction motor (IM) is proposed that satisfying requirements of reliable dynamics and steady state performance. The proposed control structure is a state of the development of FOC utilized SOSM in the inner loop that employ the artificial neural network (ANN) to estimate the rotor flux and motor speed. The SOSM controller designed based on model of induction motor (IM) that include torque control loop (inners loop) and speed tracking control (outer loop). Based on the sliding state convergence property, the state variables track the reference values. By analyzing the theory, the desired performance of the proposed control system proven for various situations. The proposed control considerably ameliorates specified disadvantages of the FOC and DTC, such as the sensitivity to motor parameter variations. The simulation results indicate the correctness of the control algorithm under the uncertainty in parameters and load variations. Keywords, (FOC, ANN’s, Uncertainty, estimation, SOSM, Robust)","PeriodicalId":213924,"journal":{"name":"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pedstc53976.2022.9767386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a second order-sliding mode (SOSM) control strategy for Field Oriented Control (FOC) of induction motor (IM) is proposed that satisfying requirements of reliable dynamics and steady state performance. The proposed control structure is a state of the development of FOC utilized SOSM in the inner loop that employ the artificial neural network (ANN) to estimate the rotor flux and motor speed. The SOSM controller designed based on model of induction motor (IM) that include torque control loop (inners loop) and speed tracking control (outer loop). Based on the sliding state convergence property, the state variables track the reference values. By analyzing the theory, the desired performance of the proposed control system proven for various situations. The proposed control considerably ameliorates specified disadvantages of the FOC and DTC, such as the sensitivity to motor parameter variations. The simulation results indicate the correctness of the control algorithm under the uncertainty in parameters and load variations. Keywords, (FOC, ANN’s, Uncertainty, estimation, SOSM, Robust)
在参数不确定条件下,基于人工神经网络的无传感器转速和磁链估计的异步电机SOSM控制
针对感应电机的场定向控制(FOC),提出了一种二阶滑模(SOSM)控制策略,该策略能满足感应电机可靠的动力学和稳态性能要求。所提出的控制结构是一种利用SOSM内环,利用人工神经网络(ANN)估计转子磁链和电机转速的FOC发展状态。基于异步电动机模型设计了SOSM控制器,该控制器包括转矩控制回路(内环)和速度跟踪控制回路(外环)。基于滑动状态收敛性,状态变量跟踪参考值。通过理论分析,证明了所提出的控制系统在各种情况下的理想性能。所提出的控制大大改善了FOC和DTC的特定缺点,例如对电机参数变化的敏感性。仿真结果表明,在参数和负荷变化不确定的情况下,控制算法是正确的。关键词:FOC, ANN,不确定性,估计,SOSM,鲁棒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信