BCP and ZQP Strategies to Reduce the SVM Training Time

Rodolfo Ibarra-Orozco, Juan Carlos López Pimentel, M. González-Mendoza, N. Hernández-Gress
{"title":"BCP and ZQP Strategies to Reduce the SVM Training Time","authors":"Rodolfo Ibarra-Orozco, Juan Carlos López Pimentel, M. González-Mendoza, N. Hernández-Gress","doi":"10.1109/MICAI.2012.30","DOIUrl":null,"url":null,"abstract":"The Support Vector Machine (SVM) is awell known method used for classification, regression and density estimation. Training a SVM consists in solving a Quadratic Programming (QP) problem. The QP problemis very resource consuming (both computational time and computational memory), because the quadratic form is dense and the memory requirements grow square the number ofdata points.In order to increase the training speed of SVM's, this paperproposes a combination of two methods, the BCP algorithm(Barycentric Correction Procedure), [15], to find, heuristically,training points with a high probability to be Support Vectors,and the ZQP algorithm, [10], to solve the reduced problem.","PeriodicalId":348369,"journal":{"name":"2012 11th Mexican International Conference on Artificial Intelligence","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2012.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Support Vector Machine (SVM) is awell known method used for classification, regression and density estimation. Training a SVM consists in solving a Quadratic Programming (QP) problem. The QP problemis very resource consuming (both computational time and computational memory), because the quadratic form is dense and the memory requirements grow square the number ofdata points.In order to increase the training speed of SVM's, this paperproposes a combination of two methods, the BCP algorithm(Barycentric Correction Procedure), [15], to find, heuristically,training points with a high probability to be Support Vectors,and the ZQP algorithm, [10], to solve the reduced problem.
减少支持向量机训练时间的BCP和ZQP策略
支持向量机(SVM)是一种众所周知的用于分类、回归和密度估计的方法。训练支持向量机就是解决一个二次规划(QP)问题。QP问题非常消耗资源(计算时间和计算内存),因为二次形式是密集的,并且内存需求是数据点数量的平方。为了提高支持向量机的训练速度,本文提出了两种方法的结合,一种是BCP算法(Barycentric Correction Procedure)[15],启发式地寻找大概率成为支持向量的训练点,另一种是ZQP算法[10],解决约简问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信