Artificial Load Profiles and PV Generation in Renewable Energy Communities Using Generative Adversarial Networks

F. Grasso, Carlos Iturrino Garcia, G. Lozito, Giacomo Talluri
{"title":"Artificial Load Profiles and PV Generation in Renewable Energy Communities Using Generative Adversarial Networks","authors":"F. Grasso, Carlos Iturrino Garcia, G. Lozito, Giacomo Talluri","doi":"10.1109/MELECON53508.2022.9843062","DOIUrl":null,"url":null,"abstract":"Understanding the electrical behavior of consumption and generation in residential areas featuring distributed photovoltaic generation is an important asset for both distribution companies and communities. This analysis is often in statistical terms. However, load and generation data can be noisy, sparse and irregular, with resulting difficulties in the following statistical analysis. A generative adversarial machine learning approach can be used to create artificial data with meaningful stochastic properties. This work focuses on the use of DCWGAN to create different profiles taken from multiple data clusters of residential sectors. This approach successfully extracts the statistical properties of the dataset and creates profiles based each on cluster with a given randomness. The implemented neural system is a powerful tool that can be used to create datasets useful for power flow analysis, optimal grid management and economic revenue simulation.","PeriodicalId":303656,"journal":{"name":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELECON53508.2022.9843062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Understanding the electrical behavior of consumption and generation in residential areas featuring distributed photovoltaic generation is an important asset for both distribution companies and communities. This analysis is often in statistical terms. However, load and generation data can be noisy, sparse and irregular, with resulting difficulties in the following statistical analysis. A generative adversarial machine learning approach can be used to create artificial data with meaningful stochastic properties. This work focuses on the use of DCWGAN to create different profiles taken from multiple data clusters of residential sectors. This approach successfully extracts the statistical properties of the dataset and creates profiles based each on cluster with a given randomness. The implemented neural system is a powerful tool that can be used to create datasets useful for power flow analysis, optimal grid management and economic revenue simulation.
使用生成对抗网络的可再生能源社区的人工负荷分布和光伏发电
了解以分布式光伏发电为特色的住宅小区的用电和发电行为对配电公司和社区都是一项重要的资产。这种分析通常是用统计术语进行的。然而,负载和发电数据可能是嘈杂的、稀疏的和不规则的,这给后续的统计分析带来了困难。生成对抗机器学习方法可用于创建具有有意义的随机特性的人工数据。这项工作的重点是使用DCWGAN从住宅部门的多个数据集群中创建不同的配置文件。该方法成功地提取了数据集的统计属性,并基于具有给定随机性的聚类创建了每个配置文件。所实现的神经系统是一个强大的工具,可用于创建对潮流分析、最优电网管理和经济收入模拟有用的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信