Accuracy Improvement of SOM-Based Data Classification for Hematopoietic Tumor Patients

N. Kamiura, A. Saitoh, T. Isokawa, N. Matsui
{"title":"Accuracy Improvement of SOM-Based Data Classification for Hematopoietic Tumor Patients","authors":"N. Kamiura, A. Saitoh, T. Isokawa, N. Matsui","doi":"10.1109/ISDA.2009.150","DOIUrl":null,"url":null,"abstract":"This paper presents map-based data classification for hematopoietic tumor patients. A set of squarely arranged neurons in the map is defined as a block, and previously proposed block-matching-based learning constructs the map used for data classification. This paper incorporates pseudo-learning processes, which employ block reference vectors as quasi-training data, in the above training processes. Pseudo-learning improves the accuracy of classification. Experimental results establish that the percentage of missing the screening data of the tumor patients is very low.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents map-based data classification for hematopoietic tumor patients. A set of squarely arranged neurons in the map is defined as a block, and previously proposed block-matching-based learning constructs the map used for data classification. This paper incorporates pseudo-learning processes, which employ block reference vectors as quasi-training data, in the above training processes. Pseudo-learning improves the accuracy of classification. Experimental results establish that the percentage of missing the screening data of the tumor patients is very low.
基于som的造血肿瘤患者数据分类准确率的提高
提出了一种基于地图的造血肿瘤患者数据分类方法。将图中整齐排列的一组神经元定义为一个块,先前提出的基于块匹配的学习构建用于数据分类的图。本文在上述训练过程中引入了以块参考向量作为准训练数据的伪学习过程。伪学习提高了分类的准确性。实验结果表明,肿瘤患者的筛查数据缺失率非常低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信