Approximate Confidence Region of State Prediction in Stochastic Dynamical Discrete-Time Systems *

Xun Shen, Tinghui Ouyang, Yuhu Wu
{"title":"Approximate Confidence Region of State Prediction in Stochastic Dynamical Discrete-Time Systems *","authors":"Xun Shen, Tinghui Ouyang, Yuhu Wu","doi":"10.23919/ACC55779.2023.10156110","DOIUrl":null,"url":null,"abstract":"The confidence region of state prediction is necessary for anomaly detection and robust control design in stochastic dynamical systems. This paper addresses the problem of computing the tightest ellipsoidal region of state prediction with a required probability confidence level for stochastic dynamical discrete-time systems. This problem is not directly tractable. In this paper, a sample-based method is proposed to construct a solvable approximate problem of the original problem. By solving the approximate problem, the approximate confidence region can be obtained. We prove that the approximate confidence region converges to the optimal confidence region with probability 1 when the number of sample data increases to infinite. Numerical simulations have been implemented to validate the effectiveness of the proposed method.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10156110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The confidence region of state prediction is necessary for anomaly detection and robust control design in stochastic dynamical systems. This paper addresses the problem of computing the tightest ellipsoidal region of state prediction with a required probability confidence level for stochastic dynamical discrete-time systems. This problem is not directly tractable. In this paper, a sample-based method is proposed to construct a solvable approximate problem of the original problem. By solving the approximate problem, the approximate confidence region can be obtained. We prove that the approximate confidence region converges to the optimal confidence region with probability 1 when the number of sample data increases to infinite. Numerical simulations have been implemented to validate the effectiveness of the proposed method.
随机动力离散系统状态预测的近似置信区域*
在随机动力系统中,状态预测置信域是异常检测和鲁棒控制设计所必需的。研究了随机动态离散系统状态预测的最紧椭球区域的概率置信度计算问题。这个问题不能直接解决。本文提出了一种基于样本的方法来构造原问题的可解近似问题。通过求解近似问题,得到近似置信区域。证明了当样本数据数量增加到无穷大时,近似置信区域以1的概率收敛到最优置信区域。数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信