Statistical circuit performance dependency analysis via sparse relevance kernel machine

H. Lin, A. Khan, Peng Li
{"title":"Statistical circuit performance dependency analysis via sparse relevance kernel machine","authors":"H. Lin, A. Khan, Peng Li","doi":"10.1109/ICICDT.2017.7993507","DOIUrl":null,"url":null,"abstract":"Design optimization, verification, and failure diagnosis of analog and mixed-signal (AMS) circuits requires accurate models that can reliably capture complex dependencies of circuit performances on essential circuit and process parameters. We present a novel Bayesian learning technique, namely sparse relevance kernel machine (SRKM), for characterizing analog circuits with sparse statistical regression models. SRKM produces more reliable classification models learned from simulation data with a limited number of samples but a large number of parameters, and also computes a probabilistically inferred weighting factor quantifying the criticality of each parameter as part of the overall learning framework. As a result, it offers a powerful tool to enable variability modeling, failure diagnosis, and test development. The effectiveness of SRKM is demonstrated in an example of building a statistical variability model for analyzing the thermal shutdown feature of a data communication AMS system for automotive applications.","PeriodicalId":382735,"journal":{"name":"2017 IEEE International Conference on IC Design and Technology (ICICDT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on IC Design and Technology (ICICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT.2017.7993507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Design optimization, verification, and failure diagnosis of analog and mixed-signal (AMS) circuits requires accurate models that can reliably capture complex dependencies of circuit performances on essential circuit and process parameters. We present a novel Bayesian learning technique, namely sparse relevance kernel machine (SRKM), for characterizing analog circuits with sparse statistical regression models. SRKM produces more reliable classification models learned from simulation data with a limited number of samples but a large number of parameters, and also computes a probabilistically inferred weighting factor quantifying the criticality of each parameter as part of the overall learning framework. As a result, it offers a powerful tool to enable variability modeling, failure diagnosis, and test development. The effectiveness of SRKM is demonstrated in an example of building a statistical variability model for analyzing the thermal shutdown feature of a data communication AMS system for automotive applications.
基于稀疏相关核机的统计电路性能相关性分析
模拟和混合信号(AMS)电路的设计优化、验证和故障诊断需要精确的模型,能够可靠地捕获电路性能对基本电路和工艺参数的复杂依赖关系。我们提出了一种新的贝叶斯学习技术,即稀疏相关核机(SRKM),用于用稀疏统计回归模型来表征模拟电路。SRKM从样本数量有限但参数数量众多的模拟数据中学习到更可靠的分类模型,并且还计算一个概率推断的权重因子,量化每个参数的临界性,作为整个学习框架的一部分。因此,它提供了一个强大的工具来支持可变性建模、故障诊断和测试开发。通过建立统计变异性模型来分析汽车数据通信AMS系统的热停机特征,验证了SRKM的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信