An adaptive approximation for Gaussian wavelet kernel

Young-Mok Ha, J. Yoon
{"title":"An adaptive approximation for Gaussian wavelet kernel","authors":"Young-Mok Ha, J. Yoon","doi":"10.1109/ICACT.2016.7423478","DOIUrl":null,"url":null,"abstract":"Kernel machine plays a critical role in science community since temporal data become more important and popular with rapidly increasing big data analysis. A major problem for the machine is difficulty in constructing kernel function. We show that it is possible to adaptively estimate the parameters of Gaussian wavelet kernel in Laplace method. Our approach is constructed on an obvious fact that the gradient of the kernel with respect to a central variable of feature space becomes zero. It is remarkable that the complexity of our estimation method is O(N) for N data. In order to validate the performance of the proposed approach, we simulate two kernel regression models which exploit the proposed approach on real electricity load data from Korea power exchange and electricity consumption data from Ireland's Commission for Energy Regulation.","PeriodicalId":125854,"journal":{"name":"2016 18th International Conference on Advanced Communication Technology (ICACT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACT.2016.7423478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kernel machine plays a critical role in science community since temporal data become more important and popular with rapidly increasing big data analysis. A major problem for the machine is difficulty in constructing kernel function. We show that it is possible to adaptively estimate the parameters of Gaussian wavelet kernel in Laplace method. Our approach is constructed on an obvious fact that the gradient of the kernel with respect to a central variable of feature space becomes zero. It is remarkable that the complexity of our estimation method is O(N) for N data. In order to validate the performance of the proposed approach, we simulate two kernel regression models which exploit the proposed approach on real electricity load data from Korea power exchange and electricity consumption data from Ireland's Commission for Energy Regulation.
高斯小波核的自适应逼近
随着大数据分析的迅速发展,时间数据变得越来越重要和流行,核机在科学界起着至关重要的作用。该机器的一个主要问题是难以构造核函数。证明了用拉普拉斯方法自适应估计高斯小波核的参数是可行的。我们的方法是基于一个明显的事实,即核相对于特征空间的中心变量的梯度变为零。值得注意的是,对于N个数据,我们的估计方法的复杂度为O(N)。为了验证所提出方法的性能,我们模拟了两个核回归模型,这两个模型利用了韩国电力交易所的实际电力负荷数据和爱尔兰能源监管委员会的电力消耗数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信