Abdülkadir Pazar, Fidan Khalilbayli, Kadir Ozlem, Ayse Feyza Yilmaz, A. Atalay, O. Atalay, Gokhan Ince
{"title":"Gait Phase Recognition using Textile-based Sensor","authors":"Abdülkadir Pazar, Fidan Khalilbayli, Kadir Ozlem, Ayse Feyza Yilmaz, A. Atalay, O. Atalay, Gokhan Ince","doi":"10.1109/UBMK55850.2022.9919491","DOIUrl":null,"url":null,"abstract":"Human gait phase detection has become an emerging field of study due to its impact in various clinical studies. In this study, a system is developed to detect the toe-off, mid-swing, heel-strike, and heel-off phases of a gait cycle in real-time by using a textile-based capacitive strain sensor mounted on the kneepad. Five healthy subjects performed walks including those four phases of the gait at a constant speed and gait distance in a laboratory environment while wearing the kneepad. The phases are labeled according to the gyroscope data of the Inertial Measurement Unit (IMU) located on the kneepad. An Long Short-Term Memory (LSTM) based network is utilized to detect the phases using the capacitance data obtained from the strain sensor. Recognition of four phases with 87 % accuracy is accomplished.","PeriodicalId":417604,"journal":{"name":"2022 7th International Conference on Computer Science and Engineering (UBMK)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK55850.2022.9919491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Human gait phase detection has become an emerging field of study due to its impact in various clinical studies. In this study, a system is developed to detect the toe-off, mid-swing, heel-strike, and heel-off phases of a gait cycle in real-time by using a textile-based capacitive strain sensor mounted on the kneepad. Five healthy subjects performed walks including those four phases of the gait at a constant speed and gait distance in a laboratory environment while wearing the kneepad. The phases are labeled according to the gyroscope data of the Inertial Measurement Unit (IMU) located on the kneepad. An Long Short-Term Memory (LSTM) based network is utilized to detect the phases using the capacitance data obtained from the strain sensor. Recognition of four phases with 87 % accuracy is accomplished.