Task-based visual saliency for intelligent compression

Patrick Harding, Neil M Roberston
{"title":"Task-based visual saliency for intelligent compression","authors":"Patrick Harding, Neil M Roberston","doi":"10.1109/ICSIPA.2009.5478703","DOIUrl":null,"url":null,"abstract":"In this paper we develop a new method for highlighting visually salient regions of an image based upon a known visual search task. The proposed method uses a robust model of instantaneous visual attention (i.e. “bottom-up”) combined with a pixel probability map derived from the automatic detection of a previously-seen object (task-dependent i.e. “top-down”). The objects to be recognised are parameterised quickly in advance by a viewpoint-invariant spatial distribution of SURF interest-points. The bottom-up and top-down object probability images are fused to produce a task-dependent saliency map. We validate our method using observer eye-tracker data collected under object search-and-count tasking. Our method shows 10% higher overlap with true attention areas under task compared to bottom-up saliency alone. The new combined saliency map is further used to develop a new intelligent compression technique which is an extension of DCT encoding. We demonstrate our technique on surveillance-style footage throughout.","PeriodicalId":400165,"journal":{"name":"2009 IEEE International Conference on Signal and Image Processing Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2009.5478703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we develop a new method for highlighting visually salient regions of an image based upon a known visual search task. The proposed method uses a robust model of instantaneous visual attention (i.e. “bottom-up”) combined with a pixel probability map derived from the automatic detection of a previously-seen object (task-dependent i.e. “top-down”). The objects to be recognised are parameterised quickly in advance by a viewpoint-invariant spatial distribution of SURF interest-points. The bottom-up and top-down object probability images are fused to produce a task-dependent saliency map. We validate our method using observer eye-tracker data collected under object search-and-count tasking. Our method shows 10% higher overlap with true attention areas under task compared to bottom-up saliency alone. The new combined saliency map is further used to develop a new intelligent compression technique which is an extension of DCT encoding. We demonstrate our technique on surveillance-style footage throughout.
智能压缩的基于任务的视觉显著性
在本文中,我们开发了一种新的方法来突出图像的视觉显著区域的基础上已知的视觉搜索任务。所提出的方法使用了瞬时视觉注意(即“自下而上”)的鲁棒模型,并结合了从先前看到的对象的自动检测(任务相关即“自上而下”)中获得的像素概率图。通过SURF兴趣点的视点不变空间分布,快速预先参数化待识别的目标。融合自底向上和自顶向下的目标概率图像,生成任务相关的显著性图。我们使用在目标搜索和计数任务下收集的观察者眼动仪数据验证了我们的方法。我们的方法显示,与单独的自下而上显著性相比,任务下与真实注意区域的重叠度高出10%。利用新的组合显著性映射进一步开发了一种新的智能压缩技术,该技术是DCT编码的扩展。我们在监控式的录像中展示了我们的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信