The Survey of Image Generation from EEG Signals based on Deep Learning

Delong Yang, Dongnan Su, Zhaohui Luo, Peng Shang, Zhigang Hu
{"title":"The Survey of Image Generation from EEG Signals based on Deep Learning","authors":"Delong Yang, Dongnan Su, Zhaohui Luo, Peng Shang, Zhigang Hu","doi":"10.1145/3502060.3502151","DOIUrl":null,"url":null,"abstract":"China has become a high-risk region of stroke. Most patients with stroke suffer regular bouts of post-stroke limb dyskinesia. Nowadays, there isn’t an effective treatment for these patients. Brain computer interface (BCI) establishes a new pathway to connect human brains and device, which provide an innovation method to repair the human brain nervous systems through rehabilitation training. However, one of the mainly brain activity recordings, Electroencephalogram (EEG), cannot be represented accurately by other algorithms. With the development of deep learning techniques, the topic of EEG signals’ representation by image generation technique has become an important research area. This paper we introduced the basic concepts of BCI systems first, then we give a survey of image generation techniques from EEG signals. At last, we proposed an experimental scheme of dataset establishment which is used for post-stroke patients with upper limb dyskinesia","PeriodicalId":193100,"journal":{"name":"2021 International Symposium on Biomedical Engineering and Computational Biology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Biomedical Engineering and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3502060.3502151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

China has become a high-risk region of stroke. Most patients with stroke suffer regular bouts of post-stroke limb dyskinesia. Nowadays, there isn’t an effective treatment for these patients. Brain computer interface (BCI) establishes a new pathway to connect human brains and device, which provide an innovation method to repair the human brain nervous systems through rehabilitation training. However, one of the mainly brain activity recordings, Electroencephalogram (EEG), cannot be represented accurately by other algorithms. With the development of deep learning techniques, the topic of EEG signals’ representation by image generation technique has become an important research area. This paper we introduced the basic concepts of BCI systems first, then we give a survey of image generation techniques from EEG signals. At last, we proposed an experimental scheme of dataset establishment which is used for post-stroke patients with upper limb dyskinesia
基于深度学习的脑电信号图像生成研究进展
中国已成为中风高发地区。大多数中风患者在中风后都会出现肢体运动障碍。目前,对这些病人还没有有效的治疗方法。脑机接口(BCI)建立了连接人脑与设备的新途径,为通过康复训练修复人脑神经系统提供了一种创新方法。然而,主要的脑活动记录之一,脑电图(EEG),不能被其他算法准确地表示。随着深度学习技术的发展,利用图像生成技术对脑电信号进行表征已成为一个重要的研究领域。本文首先介绍了脑机接口系统的基本概念,然后对脑电信号图像生成技术进行了综述。最后,我们提出了一种用于脑卒中后上肢运动障碍患者数据集建立的实验方案
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信