Convolutional Neural Networks for Environmental Sound Recognition

Svetlana Segarceanu, G. Suciu
{"title":"Convolutional Neural Networks for Environmental Sound Recognition","authors":"Svetlana Segarceanu, G. Suciu","doi":"10.1109/RoEduNet57163.2022.9920993","DOIUrl":null,"url":null,"abstract":"Environmental sound recognition is now an important field of computer science, with applications in manifold domains like security, environment protection, wildlife monitoring. The current methodology evolved from methods used in speech-based applications to more specific approaches, and with the rapid growth of the deep learning technologies many attempts using these methods came about. The paper extends our former research using Deep Feed Forward Neural Networks, by exploring the Convolutional Neural Networks for the recognition of environmental sounds susceptible to indicate a logging activity in forest environment. Unlike other Convolutional Neural Networks solutions to AESR, where the input data ix based either on Log-MelSpectrograms or raw data, we will use as input data linear frequency Log Spectrograms. We will compare these results with the ones obtained with Deep Deed forward Neural Networks applied on Fourier power spectrum.","PeriodicalId":302692,"journal":{"name":"2022 21st RoEduNet Conference: Networking in Education and Research (RoEduNet)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st RoEduNet Conference: Networking in Education and Research (RoEduNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoEduNet57163.2022.9920993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental sound recognition is now an important field of computer science, with applications in manifold domains like security, environment protection, wildlife monitoring. The current methodology evolved from methods used in speech-based applications to more specific approaches, and with the rapid growth of the deep learning technologies many attempts using these methods came about. The paper extends our former research using Deep Feed Forward Neural Networks, by exploring the Convolutional Neural Networks for the recognition of environmental sounds susceptible to indicate a logging activity in forest environment. Unlike other Convolutional Neural Networks solutions to AESR, where the input data ix based either on Log-MelSpectrograms or raw data, we will use as input data linear frequency Log Spectrograms. We will compare these results with the ones obtained with Deep Deed forward Neural Networks applied on Fourier power spectrum.
环境声音识别的卷积神经网络
环境声音识别是计算机科学的一个重要领域,在安全、环境保护、野生动物监测等诸多领域都有应用。目前的方法是从基于语音的应用中使用的方法发展到更具体的方法,随着深度学习技术的快速发展,使用这些方法的许多尝试都出现了。本文通过探索卷积神经网络识别森林环境中容易指示伐木活动的环境声音,扩展了我们以前使用深度前馈神经网络的研究。与其他卷积神经网络解决方案不同,AESR的输入数据要么基于Log- melspectrogram,要么基于原始数据,我们将使用线性频率Log spectrogram作为输入数据。我们将这些结果与应用于傅里叶功率谱的深度前向神经网络得到的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信