Semi-supervised Learning Models for Sentiment Analysis on Marketplace Dataset

Wisnalmawati Wisnalmawati, A. Aribowo, Yunie Herawati
{"title":"Semi-supervised Learning Models for Sentiment Analysis on Marketplace Dataset","authors":"Wisnalmawati Wisnalmawati, A. Aribowo, Yunie Herawati","doi":"10.25139/ijair.v4i2.5267","DOIUrl":null,"url":null,"abstract":"Sentiment analysis aims to categorize opinions using an annotated corpus to train the model. However, building a high-quality, fully annotated corpus takes a lot of effort, time, and expense. The semi-supervised learning technique efficiently adds training data automatically from unlabeled data. The labeling process, which requires human expertise and requires time, can be helped by an SSL approach. This study aims to develop an SSL-Model for sentiment analysis and to compare the learning capabilities of Naive Bayes (NB) and Random Forest (RF) in the SSL. Our model attempts to annotate opinion documents in Indonesian. We use an ensemble multi-classifier that works on unigrams, bigrams, and trigrams vectors. Our model test uses a marketplace dataset containing rating comments scrapping from Shopee for smartphone products in the Indonesian Language. The research started with data preparation, vectorization using TF-IDF, feature extraction, modeling using Random Forest (RF) and Naïve Bayes (NB), and evaluation using Accuracy and F1-score. The performance of the NB model outperformed previous research, increasing by 5,5%. The conclusion is that SSL performance highly depends on the number of training data and the compatibility of the features or patterns in the document with machine learning. On our marketplace dataset, better to use Random Forest.","PeriodicalId":208192,"journal":{"name":"International Journal of Artificial Intelligence & Robotics (IJAIR)","volume":"53 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Intelligence & Robotics (IJAIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25139/ijair.v4i2.5267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment analysis aims to categorize opinions using an annotated corpus to train the model. However, building a high-quality, fully annotated corpus takes a lot of effort, time, and expense. The semi-supervised learning technique efficiently adds training data automatically from unlabeled data. The labeling process, which requires human expertise and requires time, can be helped by an SSL approach. This study aims to develop an SSL-Model for sentiment analysis and to compare the learning capabilities of Naive Bayes (NB) and Random Forest (RF) in the SSL. Our model attempts to annotate opinion documents in Indonesian. We use an ensemble multi-classifier that works on unigrams, bigrams, and trigrams vectors. Our model test uses a marketplace dataset containing rating comments scrapping from Shopee for smartphone products in the Indonesian Language. The research started with data preparation, vectorization using TF-IDF, feature extraction, modeling using Random Forest (RF) and Naïve Bayes (NB), and evaluation using Accuracy and F1-score. The performance of the NB model outperformed previous research, increasing by 5,5%. The conclusion is that SSL performance highly depends on the number of training data and the compatibility of the features or patterns in the document with machine learning. On our marketplace dataset, better to use Random Forest.
市场数据集情感分析的半监督学习模型
情感分析的目的是使用带注释的语料库对观点进行分类来训练模型。但是,构建一个高质量的、完全注释的语料库需要花费大量的精力、时间和费用。半监督学习技术有效地从未标记数据中自动添加训练数据。标记过程需要人力专业知识和时间,可以通过SSL方法提供帮助。本研究旨在开发用于情感分析的SSL模型,并比较朴素贝叶斯(NB)和随机森林(RF)在SSL中的学习能力。我们的模型试图用印尼语注释意见文件。我们使用一个集成多分类器,它可以处理单图、双图和三元图向量。我们的模型测试使用了一个市场数据集,其中包含Shopee的印尼语智能手机产品的评级评论。研究从数据准备、使用TF-IDF进行矢量化、特征提取、使用随机森林(RF)和Naïve贝叶斯(NB)建模以及使用Accuracy和F1-score进行评估开始。NB模型的性能优于先前的研究,提高了5.5%。结论是SSL性能高度依赖于训练数据的数量以及文档中特征或模式与机器学习的兼容性。在我们的市场数据集上,最好使用随机森林。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信