Analytic representations of finite quantum systems based on $SU(2)$ coherent states in $C\cup\{\infty\}$ and potential quantum applications to energy works

Aisha Faraj Abukhzam Mohammed
{"title":"Analytic representations of finite quantum systems based on $SU(2)$ coherent states in $C\\cup\\{\\infty\\}$ and potential quantum applications to energy works","authors":"Aisha Faraj Abukhzam Mohammed","doi":"10.1109/GEC55014.2022.9986916","DOIUrl":null,"url":null,"abstract":"This study considers the finite-dimensional Hilbert space with the quantum systems. The $SU(2)$ coherent states in the extended complex plane, which is stereo graphically equivalent to a sphere, serve as the foundation for analytical representation functions of the states in this space. The analytical representation function is practically implemented using the numerical style for both the periodic and non-periodic systems. This study shows in detail the zeroes trajectories of these analytic representation functions which apply the chronological evolution of the system and derive vital findings regarding to the behaviour of the quantum system. More potentially, there are several crucial applications of quantum mechanics to advance energy works for more in depth investigation in future pathways.","PeriodicalId":280565,"journal":{"name":"2022 Global Energy Conference (GEC)","volume":"87 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Global Energy Conference (GEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEC55014.2022.9986916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study considers the finite-dimensional Hilbert space with the quantum systems. The $SU(2)$ coherent states in the extended complex plane, which is stereo graphically equivalent to a sphere, serve as the foundation for analytical representation functions of the states in this space. The analytical representation function is practically implemented using the numerical style for both the periodic and non-periodic systems. This study shows in detail the zeroes trajectories of these analytic representation functions which apply the chronological evolution of the system and derive vital findings regarding to the behaviour of the quantum system. More potentially, there are several crucial applications of quantum mechanics to advance energy works for more in depth investigation in future pathways.
基于$C\cup\{\infty\}$中$SU(2)$相干态的有限量子系统的解析表示及其在能量功中的潜在量子应用
本研究考虑具有量子系统的有限维希尔伯特空间。扩展复平面上的$SU(2)$相干态作为该空间中状态解析表示函数的基础,在立体图形上等同于球体。对于周期系统和非周期系统,解析表示函数采用数值形式实际实现。本研究详细显示了这些解析表示函数的零点轨迹,这些函数应用系统的时间演化,并得出关于量子系统行为的重要发现。更有可能的是,量子力学有几个关键的应用,可以推动能量工作,在未来的道路上进行更深入的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信