Prediction of foF2 frequency based on BP neural network with single point extrapolation

Zhen Fang, Jianjun Shen, Xuequan Zhou
{"title":"Prediction of foF2 frequency based on BP neural network with single point extrapolation","authors":"Zhen Fang, Jianjun Shen, Xuequan Zhou","doi":"10.1109/ITOEC53115.2022.9734535","DOIUrl":null,"url":null,"abstract":"In this paper, a BP neural network prediction model based on single point extrapolation is used to improve the prediction accuracy of ionospheric foF2. According to the optimization of parameters of input layer analysis to build appropriate training samples, by trial and error method to determine the hidden layer structure, using the experiment and simulation to train network to forecast, adopt the method of average test analysis prediction error, the final analysis of single point extrapolation and prediction of IRI2016 prediction model of BP neural network.","PeriodicalId":127300,"journal":{"name":"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITOEC53115.2022.9734535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a BP neural network prediction model based on single point extrapolation is used to improve the prediction accuracy of ionospheric foF2. According to the optimization of parameters of input layer analysis to build appropriate training samples, by trial and error method to determine the hidden layer structure, using the experiment and simulation to train network to forecast, adopt the method of average test analysis prediction error, the final analysis of single point extrapolation and prediction of IRI2016 prediction model of BP neural network.
基于单点外推BP神经网络的foF2频率预测
本文采用基于单点外推的BP神经网络预测模型,提高了电离层foF2的预测精度。根据输入层参数的优化分析构建合适的训练样本,通过试错法确定隐层结构,利用实验和仿真对训练网络进行预测,采用平均测试分析预测误差的方法,最终单点外推并预测BP神经网络的IRI2016预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信