G. Eneman, O. Sicart i Casain, E. Simoen, D. Brunco, B. de Jaeger, A. Satta, G. Nicholas, C. Claeys, M. Meuris, M. Heyns
{"title":"Analysis of junction leakage in advanced germanium P+/n junctions","authors":"G. Eneman, O. Sicart i Casain, E. Simoen, D. Brunco, B. de Jaeger, A. Satta, G. Nicholas, C. Claeys, M. Meuris, M. Heyns","doi":"10.1109/ESSDERC.2007.4430976","DOIUrl":null,"url":null,"abstract":"We analysed heavily doped p+/n junctions in germanium, and found that the halos in this work provide a tradeoff between transistor channel control and junction leakage. Temperature-dependent leakage measurements show that either trap-assisted tunneling (TAT) or band-to-band-tunneling (BTBT) are the dominant leakage mechanisms for junctions with halos, (junction doping above ~ 1018 cm-3). Further, perimeter leakage data at/near room temperature for these junctions are consistent with the Hurckx model for TAT. At lower doping levels (no Halo), leakages are significantly lower and correspond to a shockley-read-hall (SRH) mechanism at/near room temperature and a standard diffusion current mechanism for temperatures above ~ 75degC.","PeriodicalId":103959,"journal":{"name":"ESSDERC 2007 - 37th European Solid State Device Research Conference","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSDERC 2007 - 37th European Solid State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2007.4430976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We analysed heavily doped p+/n junctions in germanium, and found that the halos in this work provide a tradeoff between transistor channel control and junction leakage. Temperature-dependent leakage measurements show that either trap-assisted tunneling (TAT) or band-to-band-tunneling (BTBT) are the dominant leakage mechanisms for junctions with halos, (junction doping above ~ 1018 cm-3). Further, perimeter leakage data at/near room temperature for these junctions are consistent with the Hurckx model for TAT. At lower doping levels (no Halo), leakages are significantly lower and correspond to a shockley-read-hall (SRH) mechanism at/near room temperature and a standard diffusion current mechanism for temperatures above ~ 75degC.