Analisis Data Mining Sistem Inventory Menggunakan Algoritma Apriori

Fitriah, Imam Riadi, Herman
{"title":"Analisis Data Mining Sistem Inventory Menggunakan Algoritma Apriori","authors":"Fitriah, Imam Riadi, Herman","doi":"10.51454/decode.v3i1.132","DOIUrl":null,"url":null,"abstract":"Dalam manajemen rantai persedian barang (supply chain management) diperlukan kebijakan persediaan barang yang maksimal agar ketersedian barang tetap tersedia dan tidak terlambat dalam restock barang. Hal ini dibutuhkan manajemen persedian barang untuk menentukan cara yang tepat dan mempermudah dalam pengendalian persedian barang tersebut. Salah satu cara yang dilakukan adalah dengan menerapkan teknik yang terdapat pada cabang ilmu Data Mining yaitu teknik aturan asosiasi (Association Rule). Tujuan penelitian ini adalah menganalisis informasi transaksi penjualan barang untuk menghasilkan association rules dari pola kombinasi itemsets yang sesuai agar membantu pemilik dalam melakukan peletakan dan persedian barang. Langkah terpenting aturan asosiasi adalah mengetahui seberapa sering kombinasi item yang disebut frequent pattern, muncul dalam database. Objek penelitian ini adalah data transaksi penjualan barang pakaian. Berdasarkan hasil pengujian menggunakan Ms. Excel dan RapidMiner diperoleh hasil dari association rules dengan minimum support 0,2% dan confidence sesuai dengan kriteria pengujian yang telah ditentukan bahwa hasil yang memenuhi nilai support minimum dan confidence 0,8% ditemukan 7 aturan asosiasi. Dari pengurutan nilai support tertinggi yaitu STX dan LK dengan nilai support 10% dengan nilai confidence 88% dan nilai Association rules Final 8,8%. Hal ini menunjukkan bahwa produk STX dan LK merupakan produk yang paling sering dibeli secara bersamaan.","PeriodicalId":132551,"journal":{"name":"Decode: Jurnal Pendidikan Teknologi Informasi","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decode: Jurnal Pendidikan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51454/decode.v3i1.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Dalam manajemen rantai persedian barang (supply chain management) diperlukan kebijakan persediaan barang yang maksimal agar ketersedian barang tetap tersedia dan tidak terlambat dalam restock barang. Hal ini dibutuhkan manajemen persedian barang untuk menentukan cara yang tepat dan mempermudah dalam pengendalian persedian barang tersebut. Salah satu cara yang dilakukan adalah dengan menerapkan teknik yang terdapat pada cabang ilmu Data Mining yaitu teknik aturan asosiasi (Association Rule). Tujuan penelitian ini adalah menganalisis informasi transaksi penjualan barang untuk menghasilkan association rules dari pola kombinasi itemsets yang sesuai agar membantu pemilik dalam melakukan peletakan dan persedian barang. Langkah terpenting aturan asosiasi adalah mengetahui seberapa sering kombinasi item yang disebut frequent pattern, muncul dalam database. Objek penelitian ini adalah data transaksi penjualan barang pakaian. Berdasarkan hasil pengujian menggunakan Ms. Excel dan RapidMiner diperoleh hasil dari association rules dengan minimum support 0,2% dan confidence sesuai dengan kriteria pengujian yang telah ditentukan bahwa hasil yang memenuhi nilai support minimum dan confidence 0,8% ditemukan 7 aturan asosiasi. Dari pengurutan nilai support tertinggi yaitu STX dan LK dengan nilai support 10% dengan nilai confidence 88% dan nilai Association rules Final 8,8%. Hal ini menunjukkan bahwa produk STX dan LK merupakan produk yang paling sering dibeli secara bersamaan.
在供应链管理中,需要一种最大限度的商品供应链管理政策,以保持现有的商品供应,并不晚于供应库存。这需要对货物供应的管理,以确定正确的方式,并使其更容易控制供应。一种方法是应用在数据挖掘科学中发现的技术,即协会规则。本研究的目的是分析销售交易信息,使合并规则从适当的itemsets组合,帮助所有者了解产品和库存。协会规则的最重要一步是确定在数据库中出现所谓frequent模式的组合频率。本研究对象是销售服装的数据交易。根据使用Excel女士和RapidMiner的测试结果,该协会的规则最低支持0.2%,有效性,符合既定的测试标准,即结果符合最低支持值,验证率为0.8%,发现了7条相关规则。从最高的支持数值排序来看,支持数值为STX和LK,支持值为10%,信任值为88%,合并规则为8.8%。这表明STX和LK产品是最容易同时购买的产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信