Error bounds of decision templates and support vector machines in decision fusion

I. Dimou, M. Zervakis
{"title":"Error bounds of decision templates and support vector machines in decision fusion","authors":"I. Dimou, M. Zervakis","doi":"10.1504/IJKESDP.2009.028816","DOIUrl":null,"url":null,"abstract":"The need for accurate, robust, optimised classification systems has been driving information fusion methodology towards a state of early maturity throughout the last decade. Among its shortcomings we identify the lack of statistical foundation in many ad-hoc fusion methods and the lack of strong non-linear combiners with the capacity to partition complex decision spaces. In this work, we draw parallels between the well known decision templates (DT) fusion method and the nearest mean distance classifier in order to extract a useful formulation for the overall expected classification error. Additionally we evaluate DTs against a support vector machine (SVM) discriminant hyper-classifier, using two benchmark biomedical datasets. Beyond measuring performance statistics, we advocate the theoretical advantages of support vectors as multiple attractor points in a hyper-classifier's feature space.","PeriodicalId":347123,"journal":{"name":"Int. J. Knowl. Eng. Soft Data Paradigms","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Soft Data Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKESDP.2009.028816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The need for accurate, robust, optimised classification systems has been driving information fusion methodology towards a state of early maturity throughout the last decade. Among its shortcomings we identify the lack of statistical foundation in many ad-hoc fusion methods and the lack of strong non-linear combiners with the capacity to partition complex decision spaces. In this work, we draw parallels between the well known decision templates (DT) fusion method and the nearest mean distance classifier in order to extract a useful formulation for the overall expected classification error. Additionally we evaluate DTs against a support vector machine (SVM) discriminant hyper-classifier, using two benchmark biomedical datasets. Beyond measuring performance statistics, we advocate the theoretical advantages of support vectors as multiple attractor points in a hyper-classifier's feature space.
决策融合中决策模板与支持向量机的误差界
在过去的十年中,对准确、稳健、优化的分类系统的需求一直在推动信息融合方法走向早期成熟的状态。在其缺点中,我们发现许多自组织融合方法缺乏统计基础,缺乏具有划分复杂决策空间能力的强非线性组合器。在这项工作中,我们在众所周知的决策模板(DT)融合方法和最近平均距离分类器之间建立了相似之处,以便为总体期望分类误差提取有用的公式。此外,我们使用两个基准生物医学数据集对支持向量机(SVM)判别超分类器进行评估。除了测量性能统计数据之外,我们提倡支持向量作为超分类器特征空间中的多个吸引点的理论优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信