Low-Voltage Clocked Comparator With Flexible Oxide TFT Technology *

Suyash Shrivastava, P. Bahubalindruni, Nishtha Kansal
{"title":"Low-Voltage Clocked Comparator With Flexible Oxide TFT Technology *","authors":"Suyash Shrivastava, P. Bahubalindruni, Nishtha Kansal","doi":"10.1109/ISCAS46773.2023.10181745","DOIUrl":null,"url":null,"abstract":"This paper presents a novel clocked comparator circuit using amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor technology. The circuit is fabricated on a 30 $\\mu \\mathrm{m}$ flexible polymide substrate. Experimental characterization took place under normal ambient conditions. The comparator circuit employs inverters using pseudo CMOS topology to obtain better swing. It employs a clocked architecture, where the pre-amplification and regeneration phases are controlled by this clock. From measurements, the circuit is showing a VinCM of 1V - 2.5 V, power consumption of 80 $\\mu \\mathrm{W}$ average input static offset of 119mV and a swing of 70% at a clock frequency of 5 MHz and an input signal frequency of 5 kHz with a supply voltage $(\\mathrm{V}_{\\text{DD}})$ of 4 V. This circuit is showing a 62.5% improvement in speed compared to the state-of-the-art work at a relatively low $\\mathrm{V}_{\\text{DD}}$ using single-gate a-IGZO TFT technology. This circuit finds potential applications in smart sensing systems on flexible substrates.","PeriodicalId":177320,"journal":{"name":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS46773.2023.10181745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel clocked comparator circuit using amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor technology. The circuit is fabricated on a 30 $\mu \mathrm{m}$ flexible polymide substrate. Experimental characterization took place under normal ambient conditions. The comparator circuit employs inverters using pseudo CMOS topology to obtain better swing. It employs a clocked architecture, where the pre-amplification and regeneration phases are controlled by this clock. From measurements, the circuit is showing a VinCM of 1V - 2.5 V, power consumption of 80 $\mu \mathrm{W}$ average input static offset of 119mV and a swing of 70% at a clock frequency of 5 MHz and an input signal frequency of 5 kHz with a supply voltage $(\mathrm{V}_{\text{DD}})$ of 4 V. This circuit is showing a 62.5% improvement in speed compared to the state-of-the-art work at a relatively low $\mathrm{V}_{\text{DD}}$ using single-gate a-IGZO TFT technology. This circuit finds potential applications in smart sensing systems on flexible substrates.
具有柔性氧化物TFT技术的低压时钟比较器*
本文提出了一种利用非晶铟镓锌氧化物(a- igzo)薄膜晶体管技术的时钟比较电路。该电路是在30 $\mu \ mathm {m}$柔性聚酰胺衬底上制造的。实验表征是在正常环境条件下进行的。比较电路采用伪CMOS拓扑的逆变器来获得更好的摆幅。它采用时钟结构,其中预放大和再生阶段由时钟控制。从测量结果来看,电路显示的VinCM为1V - 2.5 V,功耗为80 $\mu \ mathm {W}$,时钟频率为5 MHz,输入信号频率为5 kHz,电源电压$(\ mathm {V}_{\text{DD}})$为4 V,平均输入静态偏置为119mV,摆幅为70%。该电路与使用单门a- igzo TFT技术的最先进的工作相比,在相对较低的$\math {V}_{\text{DD}}$下,速度提高了62.5%。该电路在柔性基板上的智能传感系统中发现了潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信