Time Domain Analysis for Fetal Movement Detection Using Accelerometer Data

S. Abeywardhana, H. Subhashini, W. Wasalaarachchi, G. Wimalarathna, M. Ekanayake, G. Godaliyadda, J. Wijayakulasooriya, R. Rathnayake
{"title":"Time Domain Analysis for Fetal Movement Detection Using Accelerometer Data","authors":"S. Abeywardhana, H. Subhashini, W. Wasalaarachchi, G. Wimalarathna, M. Ekanayake, G. Godaliyadda, J. Wijayakulasooriya, R. Rathnayake","doi":"10.1109/R10-HTC.2018.8629834","DOIUrl":null,"url":null,"abstract":"Fetal movement patterns are a measurement of fetal well-being. Therefore, it is important to ascertain fetal movements to avoid fetal morbidity and death. In this research, accelerometer data acquired from pregnant mothers were analyzed in order to recognize the fetal movement patterns. Identification of fetal movements from the accelerometer data is arduous due to the presence of mother’s respiratory movements and mother’s laugh signals in the data. Hence, time domain analysis was utilized to separate fetal movements from the data. The fetal movements were separated hierarchically by considering the Eigenvalues and Eigenvectors of the auto correlation matrix. The proposed method identified fetal movements with an accuracy of 95%. As the next scope of this work, it is expected to identify abnormalities in the fetal movements to predict the well-being of the fetus.","PeriodicalId":404432,"journal":{"name":"2018 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/R10-HTC.2018.8629834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Fetal movement patterns are a measurement of fetal well-being. Therefore, it is important to ascertain fetal movements to avoid fetal morbidity and death. In this research, accelerometer data acquired from pregnant mothers were analyzed in order to recognize the fetal movement patterns. Identification of fetal movements from the accelerometer data is arduous due to the presence of mother’s respiratory movements and mother’s laugh signals in the data. Hence, time domain analysis was utilized to separate fetal movements from the data. The fetal movements were separated hierarchically by considering the Eigenvalues and Eigenvectors of the auto correlation matrix. The proposed method identified fetal movements with an accuracy of 95%. As the next scope of this work, it is expected to identify abnormalities in the fetal movements to predict the well-being of the fetus.
利用加速度计数据进行胎儿运动检测的时域分析
胎儿运动模式是对胎儿健康状况的一种衡量。因此,确定胎儿运动对避免胎儿发病和死亡是很重要的。在这项研究中,为了识别胎儿的运动模式,从怀孕母亲那里获得的加速度计数据进行了分析。由于数据中存在母亲的呼吸运动和母亲的笑声信号,因此从加速度计数据中识别胎儿运动是困难的。因此,利用时域分析从数据中分离胎儿运动。利用自相关矩阵的特征值和特征向量对胎儿运动进行分层分离。该方法识别胎儿运动的准确率为95%。作为这项工作的下一个范围,预计将识别胎儿运动异常,以预测胎儿的健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信