Faezeh Mortazavie, Simin Taheri, Parisa Tandel, F. Zare, Gholmhossein Tamaddon
{"title":"The effect of Ganoderic Acid A on miR-17-5p and miR-181b expression level and apoptosis induction in human leukemia Nalm-6 cells","authors":"Faezeh Mortazavie, Simin Taheri, Parisa Tandel, F. Zare, Gholmhossein Tamaddon","doi":"10.18502/ijpho.v12i3.10058","DOIUrl":null,"url":null,"abstract":"Background: In various cancers, Ganoderic Acid A (GAA), an active triterpenoid derived from Ganoderma lucidum, has been proved to show potent anti-tumor effects. However, the possible impacts of GAA on the human leukemia cell line (Nalm-6) are not fully elucidated. Therefore, this research aimed to study the antineoplastic effect of GAA on Nalm-6 cells. \nMaterials and Methods: In this laboratory trial study, Nalm6 cells were cultured in vitro and treated with different doses of GAA (25, 50, 100, 200, and 400 μg/mL) for 24, 48, and 72 hours. The optimal treatment concentration of GAA was determined by the MTT assay. Flow cytometry was used to determine the death of Nalm-6 cells caused by GAA treatment by utilizing FITC-conjugated propidium iodide (PI) and annexin V staining. After incubation, the expression levels of miR-17-5p and miR-181b were monitored using real-time polymerase chain reaction (PCR). \nResults: Based on the half-maximal inhibitory concentration (IC50) measurements of the MTT assay, the optimal treatment concentration of GAA was 140 μg/mL (in a dose and time-dependent manner, p<0.0001). The GAA treatment was selectively toxic to the leukemia Nalm-6 cells and could remarkably induce cell apoptosis (p<0.0001). Besides, GAA downregulated the expression of miR-17-5p and miR-181b in the Nalm-6 cells compared with the untreated cells (P=0.0067 and P=0.0014, respectively). \nConclusions: Based on the present findings, GAA merits further investigation as a promising natural reagent for treating hematologic malignancies.","PeriodicalId":129489,"journal":{"name":"Iranian Journal of Pediatric Hematology & Oncology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Pediatric Hematology & Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ijpho.v12i3.10058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Background: In various cancers, Ganoderic Acid A (GAA), an active triterpenoid derived from Ganoderma lucidum, has been proved to show potent anti-tumor effects. However, the possible impacts of GAA on the human leukemia cell line (Nalm-6) are not fully elucidated. Therefore, this research aimed to study the antineoplastic effect of GAA on Nalm-6 cells.
Materials and Methods: In this laboratory trial study, Nalm6 cells were cultured in vitro and treated with different doses of GAA (25, 50, 100, 200, and 400 μg/mL) for 24, 48, and 72 hours. The optimal treatment concentration of GAA was determined by the MTT assay. Flow cytometry was used to determine the death of Nalm-6 cells caused by GAA treatment by utilizing FITC-conjugated propidium iodide (PI) and annexin V staining. After incubation, the expression levels of miR-17-5p and miR-181b were monitored using real-time polymerase chain reaction (PCR).
Results: Based on the half-maximal inhibitory concentration (IC50) measurements of the MTT assay, the optimal treatment concentration of GAA was 140 μg/mL (in a dose and time-dependent manner, p<0.0001). The GAA treatment was selectively toxic to the leukemia Nalm-6 cells and could remarkably induce cell apoptosis (p<0.0001). Besides, GAA downregulated the expression of miR-17-5p and miR-181b in the Nalm-6 cells compared with the untreated cells (P=0.0067 and P=0.0014, respectively).
Conclusions: Based on the present findings, GAA merits further investigation as a promising natural reagent for treating hematologic malignancies.