{"title":"An Aggregation Method for Large-Scale Dynamic Games","authors":"C. Santos","doi":"10.2139/ssrn.3521302","DOIUrl":null,"url":null,"abstract":"It is a well known fact that many dynamic games are subject to the curse of dimensionality, limiting the ability to use them in the study of real-world problems. I propose a new method to solve complex large-scale dynamic games using aggregation as an approximate solution. I obtain two fundamental characterization results. First, approximations with small within-state variation in the primitives have a smaller maximum error bound. I provide numerical results which compare the exact errors and the bound. Second, I find that for monotone games, order preserving aggregation is a necessary condition of any optimal aggregation. I suggest using quantiles as a straightforward implementation of an order preserving aggregation architecture for industry distributions. I conclude with an illustration, by solving and estimating a stylized dynamic reputation game for the hotel industry. Simulation results show maximal errors between the exact and approximated solutions below 6%, with average errors below 1%.","PeriodicalId":373527,"journal":{"name":"PSN: Game Theory (Topic)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Game Theory (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3521302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
It is a well known fact that many dynamic games are subject to the curse of dimensionality, limiting the ability to use them in the study of real-world problems. I propose a new method to solve complex large-scale dynamic games using aggregation as an approximate solution. I obtain two fundamental characterization results. First, approximations with small within-state variation in the primitives have a smaller maximum error bound. I provide numerical results which compare the exact errors and the bound. Second, I find that for monotone games, order preserving aggregation is a necessary condition of any optimal aggregation. I suggest using quantiles as a straightforward implementation of an order preserving aggregation architecture for industry distributions. I conclude with an illustration, by solving and estimating a stylized dynamic reputation game for the hotel industry. Simulation results show maximal errors between the exact and approximated solutions below 6%, with average errors below 1%.