Singing Evaluation based on Deep Metric Learning

Terry Tan
{"title":"Singing Evaluation based on Deep Metric Learning","authors":"Terry Tan","doi":"10.1145/3386164.3389096","DOIUrl":null,"url":null,"abstract":"This paper aims to evaluate singing performance based on deep metric learning. As the vocal sound will be the input, we will first need to separate that from a soundtrack. After the separation, the vocal audio will be represented by Mel-spectrogram as an input in our proposed model. The process to build up our model splits into pre-training and training steps. Meta learning is adopted for pre-training while deep metric learning is adopted for training. The output of the model is a Euclidean distance reflecting the singers' performance, which is determined by comparing their sounds to the originals. Experimental results show a stable and reliable singing evaluation.","PeriodicalId":231209,"journal":{"name":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386164.3389096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper aims to evaluate singing performance based on deep metric learning. As the vocal sound will be the input, we will first need to separate that from a soundtrack. After the separation, the vocal audio will be represented by Mel-spectrogram as an input in our proposed model. The process to build up our model splits into pre-training and training steps. Meta learning is adopted for pre-training while deep metric learning is adopted for training. The output of the model is a Euclidean distance reflecting the singers' performance, which is determined by comparing their sounds to the originals. Experimental results show a stable and reliable singing evaluation.
基于深度度量学习的歌唱评价
本文旨在基于深度度量学习的歌唱表演评价。因为人声是输入,所以我们首先需要将其与原声区分开来。分离后的语音音频将用梅尔谱图表示,作为我们提出的模型的输入。建立模型的过程分为预训练和训练两个步骤。预训练采用元学习,训练采用深度度量学习。该模型的输出是反映歌手表演的欧几里得距离,这是通过将他们的声音与原声进行比较而确定的。实验结果表明,该评价方法稳定可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信