Phonetic name matching for cross-lingual Spoken Sentence Retrieval

Heng Ji, R. Grishman, Wen Wang
{"title":"Phonetic name matching for cross-lingual Spoken Sentence Retrieval","authors":"Heng Ji, R. Grishman, Wen Wang","doi":"10.1109/SLT.2008.4777895","DOIUrl":null,"url":null,"abstract":"Cross-lingual spoken sentence retrieval (CLSSR) remains a challenge, especially for queries including OOV words such as person names. This paper proposes a simple method of fuzzy matching between query names and phones of candidate audio segments. This approach has the advantage of avoiding some word decoding errors in automatic speech recognition (ASR). Experiments on Mandarin-English CLSSR show that phone-based searching and conventional translation-based searching are complementary. Adding phone matching achieved 26.29% improvement on F-measure over searching on state-of-the-art machine translation (MT) output and 8.83% over entity translation (ET) output.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Cross-lingual spoken sentence retrieval (CLSSR) remains a challenge, especially for queries including OOV words such as person names. This paper proposes a simple method of fuzzy matching between query names and phones of candidate audio segments. This approach has the advantage of avoiding some word decoding errors in automatic speech recognition (ASR). Experiments on Mandarin-English CLSSR show that phone-based searching and conventional translation-based searching are complementary. Adding phone matching achieved 26.29% improvement on F-measure over searching on state-of-the-art machine translation (MT) output and 8.83% over entity translation (ET) output.
跨语言口语句子检索的语音名称匹配
跨语言口语句子检索(CLSSR)仍然是一个挑战,特别是对于包含OOV词(如人名)的查询。本文提出了一种简单的候选音频片段查询名称与电话的模糊匹配方法。这种方法的优点是避免了自动语音识别(ASR)中的一些字解码错误。中英CLSSR实验表明,基于手机的搜索与传统的基于翻译的搜索是互补的。在最先进的机器翻译(MT)输出和实体翻译(ET)输出上,添加电话匹配的F-measure比搜索提高了26.29%和8.83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信