Fusion-Based Multimodal Detection of Hoaxes in Social Networks

Cédric Maigrot, V. Claveau, Ewa Kijak
{"title":"Fusion-Based Multimodal Detection of Hoaxes in Social Networks","authors":"Cédric Maigrot, V. Claveau, Ewa Kijak","doi":"10.1109/WI.2018.00-86","DOIUrl":null,"url":null,"abstract":"Social networks make it possible to share information rapidly and massively. Yet, one of their major drawback comes from the absence of verification of the piece of information, especially with viral messages. This is the issue addressed by the participants of the Verification Multimedia Use task of Mediaeval 2016. They used several approaches and clues from different modalities (text, image, social information). In this paper, we explore the interest of combining and merging these approaches in order to evaluate the predictive power of each modality and to make the most of their potential complementarity.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.00-86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Social networks make it possible to share information rapidly and massively. Yet, one of their major drawback comes from the absence of verification of the piece of information, especially with viral messages. This is the issue addressed by the participants of the Verification Multimedia Use task of Mediaeval 2016. They used several approaches and clues from different modalities (text, image, social information). In this paper, we explore the interest of combining and merging these approaches in order to evaluate the predictive power of each modality and to make the most of their potential complementarity.
基于融合的社交网络骗局多模态检测
社交网络使快速、大规模地分享信息成为可能。然而,它们的主要缺点之一是缺乏对信息的验证,特别是对于病毒式传播的消息。这是2016年中世纪多媒体使用验证任务参与者所解决的问题。他们使用了来自不同形式(文本、图像、社会信息)的几种方法和线索。在本文中,我们探讨了结合和合并这些方法的兴趣,以评估每种模式的预测能力,并充分利用它们的潜在互补性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信