SRAM memory margin probability failure estimation using Gaussian Process regression

Manish Rana, R. Canal, Jie Han, B. Cockburn
{"title":"SRAM memory margin probability failure estimation using Gaussian Process regression","authors":"Manish Rana, R. Canal, Jie Han, B. Cockburn","doi":"10.1109/ICCD.2016.7753325","DOIUrl":null,"url":null,"abstract":"Estimating the failure probabilities of SRAM memory cells using Monte Carlo or Importance Sampling techniques is expensive in the number of SPICE simulations needed. This paper presents a methodology for estimating the dynamic margin failure probabilities by building a surrogate model of the dynamic margin using Gaussian Process regression. Additive kernel functions that can extrapolate the margin values from the simulated samples are presented. These proposed kernel functions decrease the out-of-sample error of the surrogate model for a 6T cell by 32% compared with a six-dimensional universal kernel such as a Radial-Basis-Function kernel (RBF). Finally, the failure probability values predicted by a surrogate model built using 1250 SPICE simulations are reported and compared with Monte Carlo analysis with 106 samples. The results show a relative error of 30% at 0.4V (predicted value of 4×10-6 for the Monte Carlo estimate of 3×10-6) and a relative error of 172% at 0.3V (predicted value of 3×10-5 for the Monte Carlo estimate of 1.1×10-5) for the dynamic read margin. These accuracy numbers are similar to those reported in previous proposals while the reduction in SPICE simulations is between 4× and 23× relative to these proposals and 800× compared to Monte Carlo method.","PeriodicalId":297899,"journal":{"name":"2016 IEEE 34th International Conference on Computer Design (ICCD)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 34th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2016.7753325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Estimating the failure probabilities of SRAM memory cells using Monte Carlo or Importance Sampling techniques is expensive in the number of SPICE simulations needed. This paper presents a methodology for estimating the dynamic margin failure probabilities by building a surrogate model of the dynamic margin using Gaussian Process regression. Additive kernel functions that can extrapolate the margin values from the simulated samples are presented. These proposed kernel functions decrease the out-of-sample error of the surrogate model for a 6T cell by 32% compared with a six-dimensional universal kernel such as a Radial-Basis-Function kernel (RBF). Finally, the failure probability values predicted by a surrogate model built using 1250 SPICE simulations are reported and compared with Monte Carlo analysis with 106 samples. The results show a relative error of 30% at 0.4V (predicted value of 4×10-6 for the Monte Carlo estimate of 3×10-6) and a relative error of 172% at 0.3V (predicted value of 3×10-5 for the Monte Carlo estimate of 1.1×10-5) for the dynamic read margin. These accuracy numbers are similar to those reported in previous proposals while the reduction in SPICE simulations is between 4× and 23× relative to these proposals and 800× compared to Monte Carlo method.
基于高斯过程回归的SRAM内存裕度失效概率估计
使用蒙特卡罗或重要采样技术估计SRAM存储单元的失效概率在SPICE模拟的数量上是昂贵的。本文提出了一种利用高斯过程回归建立动态裕度代理模型来估计动态裕度失效概率的方法。提出了可以从模拟样本中外推边界值的加性核函数。与径向基函数核(RBF)等六维通用核相比,这些核函数将6T细胞代理模型的样本外误差降低了32%。最后,报告了1250个SPICE模拟建立的代理模型预测的失效概率值,并与106个样本的蒙特卡罗分析进行了比较。结果表明,动态读余量在0.4V时的相对误差为30%(蒙特卡罗估计3×10-6的预测值为4×10-6),在0.3V时的相对误差为172%(蒙特卡罗估计1.1×10-5的预测值为3×10-5)。这些精度数字与以前的建议相似,而SPICE模拟的降低幅度相对于这些建议在4到23倍之间,与蒙特卡罗方法相比在800倍之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信