QoS based Deep Reinforcement Learning for V2X Resource Allocation

Shubhangi Bhadauria, Zohaib Shabbir, Elke Roth-Mandutz, G. Fischer
{"title":"QoS based Deep Reinforcement Learning for V2X Resource Allocation","authors":"Shubhangi Bhadauria, Zohaib Shabbir, Elke Roth-Mandutz, G. Fischer","doi":"10.1109/BlackSeaCom48709.2020.9234960","DOIUrl":null,"url":null,"abstract":"The 3rd generation partnership project (3GPP) standard has introduced vehicle to everything (V2X) communi-cation in Long Term Evolution (LTE) to pave the way for future intelligent transport solutions. V2X communication envisions to support a diverse range of use cases for e.g. cooperative collision avoidance, infotainment with stringent quality of service (QoS) requirements. The QoS requirements range from ultra-reliable low latency to high data rates depending on the supported application. This paper presents a QoS aware decentralized resource allocation for V2X communication based on a deep reinforcement learning (DRL) framework. The proposed scheme incorporates the independent QoS parameter, i.e. priority associated to each V2X message, that reflects the latency required in both user equipment (UE) and the base station. The goal of the approach is to maximize the throughput of all vehicle to infrastructure (V2I) links while meeting the latency constraints of vehicle to vehicle (V2V) links associated to the respective priority. A performance evaluation of the algorithm is conducted based on system level simulations for both urban and highway scenarios. The results show that incorporating the QoS parameter (i.e. priority) pertaining to the type of service supported is crucial in order to meet the latency requirements of the mission critical V2X applications.","PeriodicalId":186939,"journal":{"name":"2020 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BlackSeaCom48709.2020.9234960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The 3rd generation partnership project (3GPP) standard has introduced vehicle to everything (V2X) communi-cation in Long Term Evolution (LTE) to pave the way for future intelligent transport solutions. V2X communication envisions to support a diverse range of use cases for e.g. cooperative collision avoidance, infotainment with stringent quality of service (QoS) requirements. The QoS requirements range from ultra-reliable low latency to high data rates depending on the supported application. This paper presents a QoS aware decentralized resource allocation for V2X communication based on a deep reinforcement learning (DRL) framework. The proposed scheme incorporates the independent QoS parameter, i.e. priority associated to each V2X message, that reflects the latency required in both user equipment (UE) and the base station. The goal of the approach is to maximize the throughput of all vehicle to infrastructure (V2I) links while meeting the latency constraints of vehicle to vehicle (V2V) links associated to the respective priority. A performance evaluation of the algorithm is conducted based on system level simulations for both urban and highway scenarios. The results show that incorporating the QoS parameter (i.e. priority) pertaining to the type of service supported is crucial in order to meet the latency requirements of the mission critical V2X applications.
基于QoS的V2X资源分配深度强化学习
第三代合作伙伴计划(3GPP)标准引入了车辆到一切(V2X)的长期演进(LTE)通信,为未来的智能交通解决方案铺平了道路。V2X通信设想支持多种用例,例如,协作避免碰撞,具有严格服务质量(QoS)要求的信息娱乐。QoS需求的范围从超可靠的低延迟到高数据速率,具体取决于所支持的应用程序。提出了一种基于深度强化学习(DRL)框架的V2X通信中具有QoS意识的分散资源分配方法。该方案结合了独立的QoS参数,即与每个V2X消息相关联的优先级,该参数反映了用户设备(UE)和基站所需的延迟。该方法的目标是最大限度地提高所有车辆到基础设施(V2I)链路的吞吐量,同时满足与各自优先级相关的车辆到车辆(V2V)链路的延迟约束。基于城市和高速公路两种场景的系统级仿真,对该算法进行了性能评估。结果表明,为了满足关键任务V2X应用程序的延迟要求,结合与支持的服务类型相关的QoS参数(即优先级)至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信