Action and Assembly Time Measurement System of Industry Workers using Jetson Nano

M. O. Silva, Gustavo M. Torres, Myke D. M. Valadão, E. V. C. U. Mattos, Antônio M. C. Pereira, Matheus S. Uchôa, Lucas M. Torres, N. ValneyM., Victor L. G. Cavalcante, José E. B. S. Linhares, Adriel V. Dos Santos, Agemilson P. Silva, Caio F. S. Cruz, Rômulo Fabrício, Ruan J. S. Belém, Lucas Fujita, Felipe A.A. Araújo, Carlos A. Monteiro, Thiago B. Bezerra, W. S. S. Júnior, Celso B. Carvalho
{"title":"Action and Assembly Time Measurement System of Industry Workers using Jetson Nano","authors":"M. O. Silva, Gustavo M. Torres, Myke D. M. Valadão, E. V. C. U. Mattos, Antônio M. C. Pereira, Matheus S. Uchôa, Lucas M. Torres, N. ValneyM., Victor L. G. Cavalcante, José E. B. S. Linhares, Adriel V. Dos Santos, Agemilson P. Silva, Caio F. S. Cruz, Rômulo Fabrício, Ruan J. S. Belém, Lucas Fujita, Felipe A.A. Araújo, Carlos A. Monteiro, Thiago B. Bezerra, W. S. S. Júnior, Celso B. Carvalho","doi":"10.1109/ICCE-Taiwan55306.2022.9869028","DOIUrl":null,"url":null,"abstract":"In this work, conducted by three partners, called UFAM/CETELI, Envision (TPV Group) and ICTS, we present an embedded system capable of recognizing actions and measuring the assembly time of human workers on an industrial production line. The system is composed of machine learning algorithms and the embedded platform NVIDIA Jetson Nano. In terms of performance, the system achieved rates (best case) 91%.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, conducted by three partners, called UFAM/CETELI, Envision (TPV Group) and ICTS, we present an embedded system capable of recognizing actions and measuring the assembly time of human workers on an industrial production line. The system is composed of machine learning algorithms and the embedded platform NVIDIA Jetson Nano. In terms of performance, the system achieved rates (best case) 91%.
基于Jetson Nano的工业工人动作与装配时间测量系统
在这项由UFAM/CETELI、Envision (TPV Group)和ICTS三个合作伙伴进行的工作中,我们提出了一个嵌入式系统,能够识别工业生产线上人类工人的动作并测量其组装时间。该系统由机器学习算法和嵌入式平台NVIDIA Jetson Nano组成。在性能方面,系统达到了91%(最好的情况)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信