{"title":"Learn-on-the-go: Autonomous cross-subject context learning for internet-of-things applications","authors":"Ramin Fallahzadeh, Parastoo Alinia, Hassan Ghasemzadeh","doi":"10.1109/ICCAD.2017.8203800","DOIUrl":null,"url":null,"abstract":"Developing machine learning algorithms for applications of Internet-of-Things requires collecting a large amount of labeled training data, which is an expensive and labor-intensive process. Upon a minor change in the context, for example utilization by a new user, the model will need re-training to maintain the initial performance. To address this problem, we propose a graph model and an unsupervised label transfer algorithm (learn-on-the-go) which exploits the relations between source and target user data to develop a highly-accurate and scalable machine learning model. Our analysis on real-world data demonstrates 54% and 22% performance improvement against baseline and state-of-the-art solutions, respectively.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Developing machine learning algorithms for applications of Internet-of-Things requires collecting a large amount of labeled training data, which is an expensive and labor-intensive process. Upon a minor change in the context, for example utilization by a new user, the model will need re-training to maintain the initial performance. To address this problem, we propose a graph model and an unsupervised label transfer algorithm (learn-on-the-go) which exploits the relations between source and target user data to develop a highly-accurate and scalable machine learning model. Our analysis on real-world data demonstrates 54% and 22% performance improvement against baseline and state-of-the-art solutions, respectively.