Learn-on-the-go: Autonomous cross-subject context learning for internet-of-things applications

Ramin Fallahzadeh, Parastoo Alinia, Hassan Ghasemzadeh
{"title":"Learn-on-the-go: Autonomous cross-subject context learning for internet-of-things applications","authors":"Ramin Fallahzadeh, Parastoo Alinia, Hassan Ghasemzadeh","doi":"10.1109/ICCAD.2017.8203800","DOIUrl":null,"url":null,"abstract":"Developing machine learning algorithms for applications of Internet-of-Things requires collecting a large amount of labeled training data, which is an expensive and labor-intensive process. Upon a minor change in the context, for example utilization by a new user, the model will need re-training to maintain the initial performance. To address this problem, we propose a graph model and an unsupervised label transfer algorithm (learn-on-the-go) which exploits the relations between source and target user data to develop a highly-accurate and scalable machine learning model. Our analysis on real-world data demonstrates 54% and 22% performance improvement against baseline and state-of-the-art solutions, respectively.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Developing machine learning algorithms for applications of Internet-of-Things requires collecting a large amount of labeled training data, which is an expensive and labor-intensive process. Upon a minor change in the context, for example utilization by a new user, the model will need re-training to maintain the initial performance. To address this problem, we propose a graph model and an unsupervised label transfer algorithm (learn-on-the-go) which exploits the relations between source and target user data to develop a highly-accurate and scalable machine learning model. Our analysis on real-world data demonstrates 54% and 22% performance improvement against baseline and state-of-the-art solutions, respectively.
learning -on- on- go:物联网应用的自主跨学科上下文学习
开发用于物联网应用的机器学习算法需要收集大量标记训练数据,这是一个昂贵且劳动密集型的过程。在上下文发生微小变化时,例如新用户的使用,模型将需要重新训练以保持初始性能。为了解决这个问题,我们提出了一个图模型和一个无监督标签传输算法(learning -on-the-go),该算法利用源和目标用户数据之间的关系来开发一个高度精确和可扩展的机器学习模型。我们对实际数据的分析表明,与基线和最先进的解决方案相比,性能分别提高了54%和22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信